10 research outputs found
An Essential Physiological Role for MCT8 in Bone in Male Mice
T3 is an important regulator of skeletal development and adult bone maintenance. Thyroid hormone
action requires efficient transport of T4 and T3 into target cells. We hypothesized that
monocarboxylate transporter (MCT) 8, encoded by Mct8 on the X-chromosome, is an essential
thyroid hormone transporter in bone. To test this hypothesis, we determined the juvenile and adult
skeletal phenotypes of male Mct8 knockout mice (Mct8KO) and Mct8D1D2KO compound mutants,
which additionally lack the ability to convert the prohormone T4 to the active hormone T3. Prenatal
skeletal development was normal in both Mct8KO and Mct8D1D2KO mice, whereas postnatal
endochondral ossification and linear growth were delayed in both Mct8KO and Mct8D1D2KO mice.
Furthermore, bone mass and mineralization were decreased in adult Mct8KO and Mct8D1D2KO
mice, and compound mutants also had reduced bone strength. Delayed bone development and
maturation in Mct8KO and Mct8D1D2KO mice is consistent with decreased thyroid hormone action
in growth plate chondrocytes despite elevated serum T3 concentrations, whereas low bone mass
and osteoporosis reflects increased thyroid hormone action in adult bone due to elevated systemic
T3 levels. These studies identify an essential physiological requirement for MCT8 in chondrocytes,
and demonstrate a role for additional transporters in other skeletal cells during adult bone
maintenance
A systematic study of J/psi suppression in cold nuclear matter
Based on a Glauber model, a statistical analysis of all mid-rapidity J/psi
hadroproduction and leptoproduction data on nuclear targets is carried out.
This allows us to determine the J/psi-nucleon inelastic cross section, whose
knowledge is crucial to interpret the J/psi suppression observed in heavy-ion
collisions, at SPS and at RHIC. The values of sigma are extracted from each
experiment. A clear tension between the different data sets is reported. The
global fit of all data gives sigma=3.4+/-0.2 mb, which is significantly smaller
than previous estimates. A similar value, sigma=3.5+/-0.2 mb, is obtained when
the nDS nuclear parton densities are included in the analysis, although we
emphasize that the present uncertainties on gluon (anti)shadowing do not allow
for a precise determination of sigma. Finally, no significant energy dependence
of the J/psi-N interaction is observed, unless strong nuclear modifications of
the parton densities are assumed.Comment: 25 pages, 5 figure
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis
Osteoporosis is a common disease diagnosed primarily by measurement of bone mineral density (BMD). We undertook a genomewide association study (GWAS) in 142,487 individuals from the UK Biobank to identify loci associated with BMD as estimated by quantitative ultrasound of the heel. We identified 307 conditionally independent single-nucleotide polymorphisms (SNPs) that attained genome-wide significance at 203 loci, explaining approximately 12% of the phenotypic variance. These included 153 previously unreported loci, and several rare variants with large effect sizes. To investigate the underlying mechanisms, we undertook (1) bioinformatic, functional genomic annotation and human osteoblast expression studies; (2) gene-function prediction; (3) skeletal phenotyping of 120 knockout mice with deletions of genes adjacent to lead independent SNPs; and (4) analysis of gene expression in mouse osteoblasts, osteocytes and osteoclasts. The results implicate GPC6 as a novel determinant of BMD, and also identify abnormal skeletal phenotypes in knockout mice associated with a further 100 prioritized genes