6 research outputs found

    DNA fragmentation in mouse organs during endotoxic shock.

    No full text
    The systemic inflammatory response syndrome has still an unpredictable outcome, and patients often die of multiple organ failure despite circulatory stabilization therapy. The still incompletely understood pathophysiological mechanisms include organ damage due to direct toxic actions of cytokines elicited by overactivation of the host response. To study this process of organ failure in experimental septic shock, we injected mice with a lethal dose of endotoxin and examined apoptotic and necrotic tissue damage biochemically, histologically, and ultrastructurally. Endotoxin administration caused oligonucleosomal as well as random DNA fragmentation in liver, lung, kidney, and intestine. In the liver, DNA fragmentation was not restricted to hepatocytes but also occurred in nonparenchymal cells. The DNA fragmentation was mediated by tumor necrosis factor and attenuated by endogenous nitric oxide release. Unlike the situation in D-galactosamine-sensitized mice, in which injection or release of tumor necrosis factor causes massive hepatocyte apoptosis, liver failure due to high doses of endotoxin was characterized by single-cell necrosis, a low incidence of apoptosis, and simultaneous damage to nonparenchymal cells. We conclude that, even though endotoxin causes cytokine-mediated DNA fragmentation in several organs including the liver, hepatocyte apoptosis itself seems to be a minor phenomenon in high-dose endotoxic shock in mice

    Tumor necrosis factor-induced hepatocyte apoptosis precedes liver failure in experimental murine shock models.

    No full text
    We investigated the role of hepatocyte apoptosis in four different murine models of acute inflammatory liver failure. Liver damage induced in D-galactosamine-sensitized mice by endotoxin infection was initiated by processes typical of apoptosis, ie, chromatin condensation, DNA fragmentation, and formation of intracellular apoptotic bodies. DNA was cleaved into oligonucleosomal fragments in the liver before a significant rise of alanine aminotransferase in plasma occurred. Passive immunization against tumor necrosis factor (TNF) completely inhibited the injury caused by endotoxin. Direct injection of recombinant TNF-alpha also caused DNA fragmentation followed by alanine aminotransferase release into the plasma. Pretreatment of mice with interleukin-1 beta, which is known to suppress TNF-induced lethality, completely prevented apoptosis and liver failure in this model. These results demonstrate the causal role of TNF in endotoxin-induced hepatic apoptosis. TNF-inducible hepatocyte apoptosis in vivo was not only observed in D-galactosamine-sensitized mice, but also when the alternative transcriptional inhibitor actinomycin D was used. In mice injected with the TNF-inducing T cell mitogen concanavalin A, hepatic apoptosis was even noticed without requirement of additional sensitizers. We conclude that TNF-induced hepatocyte apoptosis is an early, general, and possibly causal event during experimental liver failure triggered by inflammatory stimuli

    The 55-kD tumor necrosis factor receptor and CD95 independently signal murine hepatocyte apoptosis and subsequent liver failure.

    No full text
    BACKGROUND: Activation of either the 55-kD tumor necrosis factor receptor (TNF-R1) or CD95 (Fas/Apo-1) causes apoptosis of cells and liver failure in mice, and has been associated with human liver disorders. The aim of this study was first to clarify the association between CD95 activation, hepatocyte apoptosis, and fulminant liver failure. Next, we investigated whether TNF-R1 and CD95 operate independently of each other in the induction of hepatocyte apoptosis. MATERIALS AND METHODS: Using both mice and primary liver cell cultures deficient in either TNF-R1 or functional CD95, the induction of apoptosis and hepatocyte death following activation of TNF-R1 or CD95 were studied in vitro and in various in vivo models of acute liver failure. RESULTS: In vivo or in vitro stimulation of CD95 caused apoptosis of wild-type (wt) murine hepatocytes which had not been sensitized by blocking transcription. Time course studies showed that DNA fragmentation and chromatin condensation preceded, respectively, membrane lysis in vitro and necrosis in vivo. Similar results were obtained after CD95 activation in hepatocytes or livers lacking TNF-R1. Conversely, hepatocytotoxicity due to endogenous or exogenous TNF was not affected in animals or liver cell cultures lacking the expression of functional CD95. CONCLUSIONS: TNF-R1 and CD95 are independent and differentially regulated triggers of murine apoptotic liver failure
    corecore