33 research outputs found

    Universal geometric approach to uncertainty, entropy and information

    Get PDF
    It is shown that for any ensemble, whether classical or quantum, continuous or discrete, there is only one measure of the "volume" of the ensemble that is compatible with several basic geometric postulates. This volume measure is thus a preferred and universal choice for characterising the inherent spread, dispersion, localisation, etc, of the ensemble. Remarkably, this unique "ensemble volume" is a simple function of the ensemble entropy, and hence provides a new geometric characterisation of the latter quantity. Applications include unified, volume-based derivations of the Holevo and Shannon bounds in quantum and classical information theory; a precise geometric interpretation of thermodynamic entropy for equilibrium ensembles; a geometric derivation of semi-classical uncertainty relations; a new means for defining classical and quantum localization for arbitrary evolution processes; a geometric interpretation of relative entropy; and a new proposed definition for the spot-size of an optical beam. Advantages of the ensemble volume over other measures of localization (root-mean-square deviation, Renyi entropies, and inverse participation ratio) are discussed.Comment: Latex, 38 pages + 2 figures; p(\alpha)->1/|T| in Eq. (72) [Eq. (A10) of published version

    Field induced stationary state for an accelerated tracer in a bath

    Full text link
    Our interest goes to the behavior of a tracer particle, accelerated by a constant and uniform external field, when the energy injected by the field is redistributed through collision to a bath of unaccelerated particles. A non equilibrium steady state is thereby reached. Solutions of a generalized Boltzmann-Lorentz equation are analyzed analytically, in a versatile framework that embeds the majority of tracer-bath interactions discussed in the literature. These results --mostly derived for a one dimensional system-- are successfully confronted to those of three independent numerical simulation methods: a direct iterative solution, Gillespie algorithm, and the Direct Simulation Monte Carlo technique. We work out the diffusion properties as well as the velocity tails: large v, and either large -v, or v in the vicinity of its lower cutoff whenever the velocity distribution is bounded from below. Particular emphasis is put on the cold bath limit, with scatterers at rest, which plays a special role in our model.Comment: 20 pages, 6 figures v3:minor corrections in sec.III and added reference

    Strange Attractors in Dissipative Nambu Mechanics : Classical and Quantum Aspects

    Full text link
    We extend the framework of Nambu-Hamiltonian Mechanics to include dissipation in R3R^{3} phase space. We demonstrate that it accommodates the phase space dynamics of low dimensional dissipative systems such as the much studied Lorenz and R\"{o}ssler Strange attractors, as well as the more recent constructions of Chen and Leipnik-Newton. The rotational, volume preserving part of the flow preserves in time a family of two intersecting surfaces, the so called {\em Nambu Hamiltonians}. They foliate the entire phase space and are, in turn, deformed in time by Dissipation which represents their irrotational part of the flow. It is given by the gradient of a scalar function and is responsible for the emergence of the Strange Attractors. Based on our recent work on Quantum Nambu Mechanics, we provide an explicit quantization of the Lorenz attractor through the introduction of Non-commutative phase space coordinates as Hermitian NĂ—N N \times N matrices in R3 R^{3}. They satisfy the commutation relations induced by one of the two Nambu Hamiltonians, the second one generating a unique time evolution. Dissipation is incorporated quantum mechanically in a self-consistent way having the correct classical limit without the introduction of external degrees of freedom. Due to its volume phase space contraction it violates the quantum commutation relations. We demonstrate that the Heisenberg-Nambu evolution equations for the Quantum Lorenz system give rise to an attracting ellipsoid in the 3N23 N^{2} dimensional phase space.Comment: 35 pages, 4 figures, LaTe

    The decoupling and solution of logistic and classical two-species Lotka-Volterra dynamics with variable production rates

    No full text
    Central to the dynamics of population biology are various versions of the Lotka-Volterra equations. Particular cases may be used to model competitive, commensal, predatory and other behaviour. Similar equations describe macro-economic interactions, epidemics and other processes of mass action. Refinements of many versions of these equations have been exhibited in the BIOMAT meetings to describe new biological features. The solutions to such equations may display a variety of forms. Broadly speaking, quite a lot of qualitative information may often be obtained about the solutions. In many cases it is convenient to eliminate time from the equations, so obtaining equations for the joint values of population sizes. By contrast, determining explicit expressions for the evolution with time of the component population sizes frequently appears to be infeasible, although numerical procedures may be available. Charles E. M. Pearce, Roy B. Leipni
    corecore