108 research outputs found

    Polymeric microring resonator based electro-optic modulator

    Get PDF
    This thesis will describe the design, realization and characterization of an EO polymeric MR resonator, which was fabricated in the framework of a MESA+ Strategic Research Orientation TeraHertz and an IST project NAIS

    A photonic chip based frequency discriminator for a high performance microwave photonic link

    Get PDF
    We report a high performance phase modulation direct detection microwave photonic link employing a photonic chip as a frequency discriminator. The photonic chip consists of five optical ring resonators (ORRs) which are fully programmable using thermo-optical tuning. In this discriminator a drop-port response of an ORR is cascaded with a through response of another ORR to yield a linear phase modulation (PM) to intensity modulation (IM) conversion. The balanced photonic link employing the PM to IM conversion exhibits high second-order and third-order input intercept points of + 46 dBm and + 36 dBm, respectively, which are simultaneously achieved at one bias point.\ud \u

    A novel microwave photonic link employing cascaded ring resonators as balanced optical discriminators

    Get PDF
    We report the design, fabrication and characterization of a balanced optical discriminator for a high performance phase modulation-direct detection microwave photonic link (MPL). The discriminator is an integrated optical filter consisting of five ring resonators which are fully tunable using thermo-optical tuning. The discriminator is configured to yield a desired transfer where the intensity transmission ramps linearly with the frequency. The performance of an MPL employing this discriminator is investigated. Measurement results on the MPL noise, linearity and spurious-free dynamic range are presented and discussed

    Integrated photonic K<sub>u</sub>-band beamformer chip with continuous amplitude and delay control

    Get PDF
    We present the first demonstration of a broadband and continuously tunable integrated optical beamforming network (IOBFN) capable of providing continuously tunable true-time-delay up to 236 ps over the entire DVB-S band (10.7–12.75 GHz), realized with a CMOS compatible process. The tunable delays are based on reconfigurable optical ring resonators in conjunction with a single optical sideband filter integrated on the same optical chip. The delays and filter responses are software programmable. Four tunable delay lines are integrated on a single chip and configured to feed a 16-element linear antenna array. The broadband beam steering capability of the proposed IOBFN is demonstrated by the squint-free antenna pattern generated from the measured RF amplitude and phase responses of the optical delay line

    Box-Shaped Dielectric Waveguides: A New Concept in Integrated Optics?

    Get PDF
    A novel class of optical waveguides with a box-shaped cross section consisting of a low-index inner material surrounded by a thin high-index coating layer is presented. This original multilayered structure widens the traditional concept of index contrast for dielectric waveguides toward a more general concept of effective index contrast, which can be artificially tailored over a continuous range by properly choosing the thickness of the outer high-index layers. An electromagnetic analysis is reported, which shows that the transverse electric and transverse magnetic modes are spatially confined in different regions of the cross section and exhibit an almost 90degC rotational symmetry. Such unusual field distribution is demonstrated to open the way to new intriguing properties with respect to conventional waveguides. Design criteria are provided into details, which mainly focus on the polarization dependence of the waveguide on geometrical parameters. The possibility of achieving single-mode waveguides with either zero or high birefringence is discussed, and the bending capabilities are compared to conventional waveguides. The feasibility of the proposed waveguide is demonstrated by the realization of prototypal samples that are fabricated by using the emerging CMOS- compatible Si3N4-SiO2 TriPleX technology. An exhaustive experimental characterization is reported, which shows propagation loss as low as state-of-the-art low-index-contrast waveguides (< 0.1 dB/cm) together with enhanced flexibility in the optimization of polarization sensitivity and confirms the high potentialities of the proposed waveguides for large-scale integrated optics

    On-chip Mach-Zehnder interferometer for OCT systems

    Get PDF
    By using integrated optics, it is possible to reduce the size and cost of a bulky optical coherence tomography (OCT) system. One of the OCT components that can be implemented on-chip is the interferometer. In this work, we present the design and characterization of a Mach-Zehnder interferometer consisting of the wavelength-independent splitters and an on-chip reference arm. The Si3N4 was chosen as the material platform as it can provide low losses while keeping the device size small. The device was characterized by using a home-built swept source OCT system. A sensitivity value of 83 dB, an axial resolution of 15.2 μm (in air) and a depth range of 2.5 mm (in air) were all obtained
    • …
    corecore