7 research outputs found

    Intralayer Negative Poisson's Ratio in Two-Dimensional Black Arsenic by Strain Engineering

    Full text link
    Negative Poisson's ratio as the anomalous characteristic generally exists in artificial architectures, such as re-entrant and honeycomb structures. The structures with negative Poisson's ratio have attracted intensive attention due to their unique auxetic effect and many promising applications in shear resistant and energy absorption fields. However, experimental observation of negative Poisson's ratio in natural materials barely happened, although various two-dimensional layered materials are predicted in theory. Herein, we report the anisotropic Raman response and the intrinsic intralayer negative Poisson's ratio of two-dimensional natural black arsenic (b-As) via strain engineering strategy. The results were evident by the detailed Raman spectrum of b-As under uniaxial strain together with density functional theory calculations. It is found that b-As was softer along the armchair than zigzag direction. The anisotropic mechanical features and van der Waals interactions play essential roles in strain-dependent Raman shifts and negative Poisson's ratio in the natural b-As along zigzag direction. This work may shed a light on the mechanical properties and potential applications of two-dimensional puckered materials.Comment: 23 pages, 4 figure

    Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper

    No full text
    The development of two-dimensional (2D) materials has opened up possibilities for their application in electronics, optoelectronics and photovoltaics, because they can provide devices with smaller size, higher speed and additional functionalities compared with conventional silicon-based devices(1). The ability to grow large, high-quality single crystals for 2D components-that is, conductors, semiconductors and insulators-is essential for the industrial application of 2D devices(2-4). Atom-layered hexagonal boron nitride (hBN), with its excellent stability, flat surface and large bandgap, has been reported to be the best 2D insulator(5-12). However, the size of 2D hBN single crystals is typically limited to less than one millimetre(13-18), mainly because of difficulties in the growth of such crystals; these include excessive nucleation, which precludes growth from a single nucleus to large single crystals, and the threefold symmetry of the hBN lattice, which leads to antiparallel domains and twin boundaries on most substrates(19). Here we report the epitaxial growth of a 100-square-centimetre single-crystal hBN monolayer on a low-symmetry Cu (110) vicinal surface, obtained by annealing an industrial copper foil. Structural characterizations and theoretical calculations indicate that epitaxial growth was achieved by the coupling of Cu < 211 > step edges with hBN zigzag edges, which breaks the equivalence of antiparallel hBN domains, enabling unidirectional domain alignment better than 99 per cent. The growth kinetics, unidirectional alignment and seamless stitching of the hBN domains are unambiguously demonstrated using centimetre-to atomic-scale characterization techniques. Our findings are expected to facilitate the wide application of 2D devices and lead to the epitaxial growth of broad non-centrosymmetric 2D materials, such as various transition-metal dichalcogenides(20-23), to produce large single crystals
    corecore