5 research outputs found

    Production and Properties of a Thermostable, pH—Stable Exo-Polygalacturonase Using Aureobasidium pullulans Isolated from Saharan Soil of Algeria Grown on Tomato Pomace

    No full text
    Polygalacturonase is a valuable biocatalyst for several industrial applications. Production of polygalacturonase using the Aureobasidium pullulans stain isolated from Saharan soil of Algeria was investigated. Its capacity to produce polygalacturonase was assessed under submerged culture using tomato pomace as an abundant agro-industrial substrate. Optimization of the medium components, which enhance polygalacturonase activity of the strain Aureobasidium pullulans, was achieved with the aid of response surface methodology. The composition of the optimized medium was as follows: tomato pomace 40 g/L, lactose 1.84 g/L, CaCl20.09 g/L and pH 5.16. Practical validation of the optimum medium provided polygalacturonase activity of 22.05 U/mL, which was 5-fold higher than in unoptimized conditions. Batch cultivation in a 20 L bioreactor performed with the optimal nutrients and conditions resulted in a high polygalacturonase content (25.75 U/mL). The enzyme showed stability over a range of temperature (5–90 °C) with an optimum temperature of 60 °C with pH 5.0, exhibiting 100% residual activity after 1h at 60 °C. This enzyme was stable at a broad pH range (5.0–10). The enzyme proved to be an exo-polygalacturonase, releasing galacturonic acid by hydrolysis of polygalacturonic acid. Moreover, the exo-polygalacturonase was able to enhance the clarification of both apple and citrus juice. As a result, an economical polygalacturonase production process was defined and proposed using an industrial food by-product

    An Alkalothermophilic Amylopullulanase from the Yeast <i>Clavispora lusitaniae</i> ABS7: Purification, Characterization and Potential Application in Laundry Detergent

    No full text
    In the present study, α-amylase and pullulanase from Clavispora lusitaniae ABS7 isolated from wheat seeds were studied. The gel filtration and ion-exchange chromatography revealed the presence of α-amylase and pullulanase activities in the same fraction with yields of 23.88% and 21.11%, respectively. SDS-PAGE showed a single band (75 kDa), which had both α-amylase (independent of Ca2+) and pullulanase (a calcium metalloenzyme) activities. The products of the enzymatic reaction on pullulan were glucose, maltose, and maltotriose, whereas the conversion of starch produced glucose and maltose. The α-amylase and pullulanase had pH optima at 9 and temperature optima at 75 and 80 °C, respectively. After heat treatment at 100 °C for 180 min, the pullulanase retained 42% of its initial activity, while α-amylase maintained only 38.6%. The cations Zn2+, Cu2+, Na+, and Mn2+ increased the α-amylase activity. Other cations Hg2+, Mg2+, and Ca2+ were stimulators of pullulanase. Urea and Tween 80 inhibited both enzymes, whereas EDTA only inhibited pullulanase. In addition, the amylopullulanase retained its activity in the presence of various commercial laundry detergents. The performance of the alcalothermostable enzyme of Clavispora lusitaniae ABS7 qualified it for the industrial use, particularly in detergents, since it had demonstrated an excellent stability and compatibility with the commercial laundry detergents

    Production and Properties of a Thermostable, pH-Stable Exo-Polygalacturonase Using Aureobasidium pullulans Isolated from Saharan Soil of Algeria Grown on Tomato Pomace.

    No full text
    Polygalacturonase is a valuable biocatalyst for several industrial applications. Production of polygalacturonase using the Aureobasidium pullulans stain isolated from Saharan soil of Algeria was investigated. Its capacity to produce polygalacturonase was assessed under submerged culture using tomato pomace as an abundant agro-industrial substrate. Optimization of the medium components, which enhance polygalacturonase activity of the strain Aureobasidium pullulans, was achieved with the aid of response surface methodology. The composition of the optimized medium was as follows: tomato pomace 40 g/L, lactose 1.84 g/L, CaCl₂0.09 g/L and pH 5.16. Practical validation of the optimum medium provided polygalacturonase activity of 22.05 U/mL, which was 5-fold higher than in unoptimized conditions. Batch cultivation in a 20 L bioreactor performed with the optimal nutrients and conditions resulted in a high polygalacturonase content (25.75 U/mL). The enzyme showed stability over a range of temperature (5-90 °C) with an optimum temperature of 60 °C with pH 5.0, exhibiting 100% residual activity after 1h at 60 °C. This enzyme was stable at a broad pH range (5.0-10). The enzyme proved to be an exo-polygalacturonase, releasing galacturonic acid by hydrolysis of polygalacturonic acid. Moreover, the exo-polygalacturonase was able to enhance the clarification of both apple and citrus juice. As a result, an economical polygalacturonase production process was defined and proposed using an industrial food by-product.info:eu-repo/semantics/publishe

    Improving Bread Quality with the Application of a Newly Purified Thermostable α-Amylase from Rhizopus oryzae FSIS4

    No full text
    A new thermostable α-amylase from Rhizopus oryzae FSIS4 was purified for first time and recovered in a single step using a three-phase partitioning (TPP) system. The fungal α-amylase, at a concentration of 1.936 U per kg of flour, was used in bread-making and compared to the commercial enzyme. The results showed a significant effect of the recovered α-amylase in the prepared bread and allowed us to improve the quality of the bread. The study indicated clearly that the recovered α-amylase is a potential candidate for future applications in the bread-making industry and in other food biotechnology applications
    corecore