20 research outputs found

    Thyroid hormone metabolism and environmental chemical exposure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polychlorinated dioxins and –furans (PCDD/Fs) and polychlorinated-biphenyls (PCBs) are environmental toxicants that have been proven to influence thyroid metabolism both in animal studies and in human beings. In recent years polybrominated diphenyl ethers (PBDEs) also have been found to have a negative influence on thyroid hormone metabolism. The lower brominated flame retardants are now banned in the EU, however higher brominated decabromo-diphenyl ether (DBDE) and the brominated flame retardant hexabromocyclododecane (HBCD) are not yet banned. They too can negatively influence thyroid hormone metabolism. An additional brominated flame retardant that is still in use is tetrabromobisphenol-A (TBBPA), which has also been shown to influence thyroid hormone metabolism.</p> <p>Influences of brominated flame retardants, PCDD/F’s and dioxin like-PCBs (dl-PCB’s) on thyroid hormone metabolism in adolescence in the Netherlands will be presented in this study and determined if there are reasons for concern to human health for these toxins. In the period 1987-1991, a cohort of mother-baby pairs was formed in order to detect abnormalities in relation to dioxin levels in the perinatal period. The study demonstrated that PCDD/Fs were found around the time of birth, suggesting a modulation of the setpoint of thyroid hormone metabolism with a higher 3,3’, 5,5’tetrathyroxine (T4) levels and an increased thyroid stimulating hormone (TSH). While the same serum thyroid hormone tests (- TSH and T4) were again normal by 2 years of age and were still normal at 8-12 years, adolescence is a period with extra stress on thyroid hormone metabolism. Therefore we measured serum levels of TSH, T4, 3,3’,5- triiodothyronine (T3), free T4 (FT4), antibodies and thyroxine-binding globulin (TBG) in our adolescent cohort.</p> <p>Methods</p> <p>Vena puncture was performed to obtain samples for the measurement of thyroid hormone metabolism related parameters and the current serum dioxin (PCDD/Fs), PCB and PBDE levels.</p> <p>Results</p> <p>The current levels of T3 were positively correlated to BDE-99. A positive trend with FT4 and BDE-99 was also seen, while a positive correlation with T3 and dl-PCB was also seen. No correlation with TBG was seen for any of the contaminants. Neither the prenatal nor the current PCDD/F levels showed a relationship with the thyroid parameters in this relatively small group.</p> <p>Conclusion</p> <p>Once again the thyroid hormone metabolism (an increase in T3) seems to have been influenced by current background levels of common environmental contaminants: dl-PCBs and BDE-99. T3 is a product of target organs and abnormalities might indicate effects on hormone transporters and could cause pathology. While the influence on T3 levels may have been compensated, because the adolescents functioned normal at the time of the study period, it is questionable if this compensation is enough for all organs depending on thyroid hormones.</p

    Thyroid hormone metabolism and environmental chemical exposure. Environ

    No full text
    Thyroid hormone metabolism and environmental chemical exposure Leijs, M.M.; ten Tusscher, G.W.; Olie, K.; van Teunenbroek, T.; van Aalderen, W.M.C.; de Voogt, W.P.; Vulsma, T.; Bartonova, A.; Krayer von Krauss, M.; Mosoiu, C.; RiojasRodriguez, H.; Calamandrei, G.; Koppe, J.G. Published in: Environmental Health DOI: 10.1186/1476-069X-11-S1-S10 Link to publication Citation for published version (APA): Leijs, M. M., ten Tusscher, G. W., Olie, K., van Teunenbroek, T., van Aalderen, W. M. C., de Voogt, P., ... Koppe, J. G. (2012). Thyroid hormone metabolism and environmental chemical exposure. Environmental Health, 11(Suppl 1), S10. https://doi.org/10.1186/1476-069X-11-S1-S10 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Abstract Background: Polychlorinated dioxins and -furans (PCDD/Fs) and polychlorinated-biphenyls (PCBs) are environmental toxicants that have been proven to influence thyroid metabolism both in animal studies and in human beings. In recent years polybrominated diphenyl ethers (PBDEs) also have been found to have a negative influence on thyroid hormone metabolism. The lower brominated flame retardants are now banned in the EU, however higher brominated decabromo-diphenyl ether (DBDE) and the brominated flame retardant hexabromocyclododecane (HBCD) are not yet banned. They too can negatively influence thyroid hormone metabolism. An additional brominated flame retardant that is still in use is tetrabromobisphenol-A (TBBPA), which has also been shown to influence thyroid hormone metabolism. Influences of brominated flame retardants, PCDD/F&apos;s and dioxin like-PCBs (dl-PCB&apos;s) on thyroid hormone metabolism in adolescence in the Netherlands will be presented in this study and determined if there are reasons for concern to human health for these toxins. In the period 1987-1991, a cohort of mother-baby pairs was formed in order to detect abnormalities in relation to dioxin levels in the perinatal period. The study demonstrated that PCDD/Fs were found around the time of birth, suggesting a modulation of the setpoint of thyroid hormone metabolism with a higher 3,3&apos;, 5,5&apos;tetrathyroxine (T4) levels and an increased thyroid stimulating hormone (TSH). While the same serum thyroid hormone tests (-TSH and T4) were again normal by 2 years of age and were still normal at 8-12 years, adolescence is a period with extra stress on thyroid hormone metabolism. Therefore we measured serum levels of TSH, T4, 3,3&apos;,5-triiodothyronine (T3), free T4 (FT4), antibodies and thyroxine-binding globulin (TBG) in our adolescent cohort. Methods: Vena puncture was performed to obtain samples for the measurement of thyroid hormone metabolism related parameters and the current serum dioxin (PCDD/Fs), PCB and PBDE levels

    Correlative Monitoring of Immune Activation and Tissue Damage in Malignant Melanoma—An Algorithm for Identification of Tolerance Breakage During Immune Checkpoint Inhibitor Therapy of Cancer

    No full text
    We describe an innovative approach for identification of tolerance breakage during immune checkpoint inhibitor therapy in malignant melanoma. Checkpoint inhibitor therapy enhances the immunologic clearance of cancer by suppressing pathways which induce immune suppression and tolerance. We posit that by analyzing temporal correlations of key markers of immune activation and tissue damage it would be possible to detect the onset of anticancer immune reaction as well as of immunologic adverse effects which might become crucial for optimization as well as safety of immune checkpoint inhibitor treatment. We analyzed time courses of routine laboratory values of serum tumor markers as well as of markers of immune activation in 17 patients with metastasized malignant melanoma receiving checkpoint inhibition and weekly laboratory controls. A parallel serum level increase of interleukin-6 and the tumor marker S100B could be identified in 13 patients, suggesting that the onset of tolerance breakage under checkpoint inhibition may be identified and measured. Immune-related adverse events in the patients were also accompanied by a peak of IL-6. In six patients, the onset of a putative anticancer immune reaction and the beginning of immunologic adverse events occurred in the same treatment cycle; in six patients the immunologic adverse reactions took place in separate cycles

    Findings on prenatal, lactational and later childhood exposure to dioxins and dioxin-like compounds: a review of the Amsterdam-Zaandam cohort 1987–2005

    No full text
    The Amsterdam-Zaandam cohort has been studied intermittently since 1987. The cohort was selected for optimal pregnancy and birth, in whom prenatal, lactational and more recently current dioxin exposures were measured. In the perinatal period and during the years thereafter, effects on various organ systems have been documented: thyroid, metabolism, immunity, haematology, motor development, brain development, lung function and puberty. We present a review of the endpoints studied, from the perinatal period into adolescence

    Exposure to environmental contaminants and lung function in adolescents—Is there a link?

    Get PDF
    Dioxins (polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDF)), polychlorinated biphenyls (PCBs), and brominated flame retardants (BDEs) are well known toxic environmental contaminants. Their possible role in the incidence of respiratory disease is not yet well understood. Previous studies showed a negative effect on lung function in relation to prenatal and lactational dioxin exposure in pre-pubertal children. Effects of BDE exposure on the lung function have not previously been evaluated. As part of a longitudinal cohort study, the effects of perinatal dioxin (PCDD/F) exposure and serum PCDD/F, dl-PCB, and BDE levels on lung function in adolescents were assessed using spirometry, a body box, and diffusion measurements. Thirty-three children (born between 1986 and 1991) consented to the current follow-up study. Prenatal, lactational, and current dioxin, PCB, and BDE concentrations were determined using GC-MS. No relationship was seen between prenatal and lactational dioxin exposure, nor with current PCB body burden, and lung function. Indications of increasing airway obstruction were seen in relation to increasing current BDE exposure. This is a novel finding and certainly warrants further research

    Alterations in the programming of energy metabolism in adolescents with background exposure to dioxins, dl-PCBs and PBDEs

    No full text
    Dioxins and PCBs are highly toxic and persistent environmental pollutants that are measurable in humans worldwide. These persistent organic pollutants are associated with a higher incidence of diabetes mellitus. We hypothesise that perinatal (background) exposure to industrial pollutants like dioxins also influences body mass development and energy metabolism in later life. In The Netherlands, the perinatal exposure (prenatal exposure and postnatal lactational intake) to dioxins has been studied prospectively since 1987. Fasting glucose, insulin, HbA1c and leptin were analysed in 33 children of the original cohort of 60. BMI, glucose:insulin and BMI:leptin ratios were calculated. Prenatal exposure, lactational intake and current serum levels of dioxins (PCDD/F), dl-PCBs and PBDE concentrations were determined using (HR)GC-MS. Prenatal dioxin (PCDD/F) exposure was positively correlated to the glucose:insulin ratio (p = 0.024) and negatively correlated to the fasting insulin concentration (p = 0.017) in adolescence. Postnatal lactational PCDD/F intake was also negatively correlated to fasting insulin concentration (p = 0.028). Current serum levels of PCDD/Fs and total TEQ (dl-PCBs+PCDD/Fs) were positively correlated to the fasting serum glucose concentration (p = 0.015 and p = 0.037, respectively).No metabolic effects were seen in association with current serum levels of PBDEs. A positive correlation between the insulin and leptin concentrations (p = 0.034) was observed. No effects were found on leptin levels, BMI:leptin ratio, HbA1c levels or BMI. This study indicates that prenatal and lactational exposure influences glucose metabolism in adolescents, presumably through a negative effect on insulin secretion by pancreatic beta cells. Additionally, the very low recent background exposure to dioxins in puberty possibly has an effect on the glucose leve

    Altered Gene Expression in Dioxin-Like and Non-Dioxin-Like PCB Exposed Peripheral Blood Mononuclear Cells

    No full text
    Polychlorinated biphenyls (PCBs) are well known carcinogenic persistent environmental pollutants and endocrine disruptors. Our aim was to identify the possible dysregulation of genes in PCB exposed peripheral blood mononuclear cells (PBMCs) in order to give more insight into the differential pathophysiological effects of PCB congeners and mixtures, with an emphasis on immunological effects and oxidative stress. The PBMCs of a healthy volunteer (male, 56 years old) were exposed to a mixture of dioxin-like (DL)-PCBs (PCB 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, and 189, 250 &micro;g/L resp.) or non-dioxin-like (NDL)-PCBs (PCB 28, 52, 101, 138, 153, 180, 250 &micro;g/L resp.) or single PCB congener (no.28, 138, 153, 180, 250 &micro;g/L resp.). After an incubation period of 24 h, a microarray gene expression screening was performed, and the results were compared to gene expression in control samples (PBMCs treated with the vehicle iso-octane). Treatment of PBMCs with the DL-PCB mixture resulted in the largest number of differentially regulated genes (181 upregulated genes &gt;2-fold, 173 downregulated &gt;2-fold). Treatment with the NDL-PCB mix resulted in 32 upregulated genes &gt;2-fold and 12 downregulated genes &gt;2-fold. A gene set enrichment analysis (GSEA) on DL-PCB treated PBMCs resulted in an upregulation of 125 gene sets and a downregulation of 76 gene sets. Predominantly downregulated gene sets were involved in immunological pathways (such as response to virus, innate immune response, defense response). An upregulation of pathways related to oxidative stress could be observed for all PCB congeners except PCB-28; the latter congener dysregulated the least number of genes. Our experiment augments the information known about immunological and cellular stress responses following DL- as well as NDL-PCB exposure and provides new information on PCB 28. Further studies should be performed to evaluate how disruption of these pathways contributes to the development of autoimmune diseases and cancer
    corecore