174 research outputs found
Binary Oscillatory Crossflow Electrophoresis
Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that solute is drawn into the cell from reservoirs at both ends of the cell leading to a large mass build up. As a consequence, any initially induced mass flux will vanish after short times. This effect was not captured by the infinite channel model and hence numerical and experimental results deviated significantly. The revised model including finite cell lengths and reservoir volumes allowed quantitative predictions of the time history of the concentration profile throughout the system. This latter model accurately describes the fluxes observed for both oscillatory flow modes in experiments using single protein species. Based on the results obtained from research funded under NASA grant NAG-8-1080.S, we conclude that binary separations are not possible using purely oscillatory flow modes because of end effects associated with the cos((omega)t) mode. Our research shows, however, that a combination of cos(2(omega)t) and steady flow should lead to efficient separation free of end effects. This possibility is currently under investigation
Two-layer viscous instability in a rotating couette device
A novel experiment to study the interfacial shear instability between two liquids is described. Density-matched immiscible liquids are confined between concentric cylinders such that the interface is parallel to the cylinder walls. Interfacial waves that develop because of viscosity differences between the shearing fluids are studied as a function of rotation rate and depth ratio using optical techniques. Conditions neutral stability and the most unstable wavenumber agree reasonably well with predictions from linear stability analysis of the Navier-Stokes equations. Illumination using laser sheets allows precise measurement of the interface shape. Future experiments will verify the correctness of weakly nonlinear theories that describe energy transfer and saturation of wave growth by nonlinear effects. Measurements of solitary wave shapes, that occur far above neutral stability, will be compared to similar measurements for systems that have gravity as an important force to determine how gravity effects large disturbances. These results will be used to interpret slug and annular flow data that have been obtained in other mu g studies
Fundamental Processes of Atomization in Fluid-Fluid Flows
This paper discusses our proposed experimental and theoretical study of atomization in gas-liquid and liquid-liquid flows. While atomization is a very important process in these flows, the fundamental mechanism is not understood and there is no predictive theory. Previous photographic studies in (turbulent) gas-liquid flows have shown that liquid is atomized when it is removed by the gas flow from the crest of large solitary or roll waves. Our preliminary studies in liquid-liquid laminar flows exhibit the same mechanism. The two-liquid system is easier to study than gas-liquid systems because the time scales are much slower, the length scales much larger, and there is no turbulence. The proposed work is intended to obtain information about the mechanism of formation, rate of occurrence and the evolving shape of solitary waves; and quantitative aspects of the detailed events of the liquid removal process that can be used to verify a general predictive theory
Detoxification in rehabilitation in England: effective continuity of care or unhappy bedfellows?
There is evidence that residential detoxification alone does not provide satisfactory treatment outcomes and that outcomes are significantly enhanced when clients completing residential detoxification attend rehabilitation services (Gossop, Marsden, Stewart, & Rolfe, 1999; Ghodse, Reynolds, Baldacchino, et al., 2002). One way of increasing the likelihood of this continuity of treatment is by providing detoxification and rehabilitation within the same treatment facility to prevent drop-out, while the client awaits a rehabilitation bed or in the transition process. However, there is little research evidence available on the facilities that offer both medical detoxification and residential rehabilitation. The current study compares self-reported treatment provision in 87 residential rehabilitation services in England, 34 of whom (39.1%) reported that they offered detoxification services within their treatment programmes. Although there were no differences in self-reported treatment philosophies, residential rehabilitation services that offered detoxification were typically of shorter duration overall, had significantly more beds and reported offering more group work than residential rehabilitation services that did not offer detoxification. Outcomes were also different, with twice as many clients discharged on disciplinary grounds from residential rehabilitation services without detoxification facilities. The paper questions the UK classification of residential drug treatment services as either detoxification or rehabilitation and suggests the need for greater research focus on the aims, processes and outcomes of this group of treatment providers
SmartOTPs: An Air-Gapped 2-Factor Authentication for Smart-Contract Wallets
With the recent rise of cryptocurrencies' popularity, the security and
management of crypto-tokens have become critical. We have witnessed many
attacks on users and providers, which have resulted in significant financial
losses. To remedy these issues, several wallet solutions have been proposed.
However, these solutions often lack either essential security features,
usability, or do not allow users to customize their spending rules.
In this paper, we propose SmartOTPs, a smart-contract wallet framework that
gives a flexible, usable, and secure way of managing crypto-tokens in a
self-sovereign fashion. The proposed framework consists of four components
(i.e., an authenticator, a client, a hardware wallet, and a smart contract),
and it provides 2-factor authentication (2FA) performed in two stages of
interaction with the blockchain. To the best of our knowledge, our framework is
the first one that utilizes one-time passwords (OTPs) in the setting of the
public blockchain. In SmartOTPs, the OTPs are aggregated by a Merkle tree and
hash chains whereby for each authentication only a short OTP (e.g., 16B-long)
is transferred from the authenticator to the client. Such a novel setting
enables us to make a fully air-gapped authenticator by utilizing small QR codes
or a few mnemonic words, while additionally offering resilience against quantum
cryptanalysis. We have made a proof-of-concept based on the Ethereum platform.
Our cost analysis shows that the average cost of a transfer operation is
comparable to existing 2FA solutions using smart contracts with
multi-signatures
Upward Three-Dimensional Grid Drawings of Graphs
A \emph{three-dimensional grid drawing} of a graph is a placement of the
vertices at distinct points with integer coordinates, such that the straight
line segments representing the edges do not cross. Our aim is to produce
three-dimensional grid drawings with small bounding box volume. We prove that
every -vertex graph with bounded degeneracy has a three-dimensional grid
drawing with volume. This is the broadest class of graphs admiting
such drawings. A three-dimensional grid drawing of a directed graph is
\emph{upward} if every arc points up in the z-direction. We prove that every
directed acyclic graph has an upward three-dimensional grid drawing with
volume, which is tight for the complete dag. The previous best upper
bound was . Our main result is that every -colourable directed
acyclic graph ( constant) has an upward three-dimensional grid drawing with
volume. This result matches the bound in the undirected case, and
improves the best known bound from for many classes of directed
acyclic graphs, including planar, series parallel, and outerplanar
The Caltech Millimeter Wave Interferometer
The Caltech Millimeter-Wave Interferometer has recently begun observations at a wavelength of 2.6 mm. We describe the instrument and some of the first results from it
Large Anomalous Hall effect in a silicon-based magnetic semiconductor
Magnetic semiconductors are attracting high interest because of their
potential use for spintronics, a new technology which merges electronics and
manipulation of conduction electron spins. (GaMn)As and (GaMn)N have recently
emerged as the most popular materials for this new technology. While Curie
temperatures are rising towards room temperature, these materials can only be
fabricated in thin film form, are heavily defective, and are not obviously
compatible with Si. We show here that it is productive to consider transition
metal monosilicides as potential alternatives. In particular, we report the
discovery that the bulk metallic magnets derived from doping the narrow gap
insulator FeSi with Co share the very high anomalous Hall conductance of
(GaMn)As, while displaying Curie temperatures as high as 53 K. Our work opens
up a new arena for spintronics, involving a bulk material based only on
transition metals and Si, and which we have proven to display a variety of
large magnetic field effects on easily measured electrical properties.Comment: 19 pages with 5 figure
Regularity issues in the problem of fluid structure interaction
We investigate the evolution of rigid bodies in a viscous incompressible
fluid. The flow is governed by the 2D Navier-Stokes equations, set in a bounded
domain with Dirichlet boundary conditions. The boundaries of the solids and the
domain have H\"older regularity , . First, we
show the existence and uniqueness of strong solutions up to collision. A key
ingredient is a BMO bound on the velocity gradient, which substitutes to the
standard estimate for smoother domains. Then, we study the asymptotic
behaviour of one body falling over a flat surface. We show that
collision is possible in finite time if and only if
- …