313 research outputs found

    HST STIS Ultraviolet Spectral Evidence of Outflow in Extreme Narrow-line Seyfert 1 Galaxies: II. Modeling and Interpretation

    Full text link
    We present modeling to explore the conditions of the broad-line emitting gas in two extreme Narrow-line Seyfert 1 galaxies, using the observational results described in the first paper of this series. Photoionization modeling using Cloudy was conducted for the broad, blueshifted wind lines and the narrow, symmetric, rest-wavelength-centered disk lines separately. A broad range of physical conditions were explored for the wind component, and a figure of merit was used to quantitatively evaluate the simulation results. Of the three minima in the figure-of-merit parameter space, we favor the solution characterized by an X-ray weak continuum, elevated abundances, a small column density (log(N_H)\approx 21.4), relatively high ionization parameter (log(U)\approx -1.2 - -0.2), a wide range of densities (log(n)\approx 7 - 11), and a covering fraction of ~0.15. The presence of low-ionization emission lines implies the disk component is optically thick to the continuum, and the SiIII]/CIII] ratio implies a density of 10^10 - 10^10.25 cm^-3. A low ionization parameter (log(U)=-3) is inferred for the intermediate-ionization lines, unless the continuum is ``filtered'' through the wind before illuminating the intermediate-line emitting gas, in which case log(U)=-2.1. The location of the emission regions was inferred from the photoionization modeling and a simple ``toy'' dynamical model. A large black hole mass (1.3 x 10^8 M_\odot) radiating at 11% of the Eddington luminosity is consistent with the kinematics of both the disk and wind lines, and an emission radius of ~10^4 R_S is inferred for both. We compare these results with previous work and discuss implications.Comment: 45 pages, 15 figures (4 color), accepted for publication in ApJ, abstract shortene

    XMM-Newton monitoring of X-ray variability in the quasar PKS 0558-504

    Get PDF
    We present the temporal analysis of X-ray observations of the radio-loud Narrow-Line Seyfert 1 galaxy (NLS1) PKS 0558-504 obtained during the XMM-Newton Calibration and Performance Verification (Cal/PV) phase. The long term light curve is characterized by persistent variability with a clear tendency for the X-ray continuum to harden when the count rate increases. Another strong correlation on long time scales has been found between the variability in the hard band and the total flux. On shorter time scales the most relevant result is the presence of smooth modulations, with characteristic time of ~ 2 hours observed in each individual observation. The short term spectral variability turns out to be rather complex but can be described by a well defined pattern in the hardness ratio-count rate plane.Comment: 6 pages, 7 figures, accepted for publication in A&A special issue on first results from XM

    PSR J2229+6114: Discovery of an Energetic Young Pulsar in the Error Box of the EGRET Source 3EG J2227+6122

    Get PDF
    We report the detection of radio and X-ray pulsations at a period of 51.6 ms from the X-ray source RX/AX J2229.0+6114 in the error box of the EGRET source 3EG J2227+6122. An ephemeris derived from a single ASCA observation and multiple epochs at 1412 MHz from Jodrell Bank indicates steady spin-down with P-dot = 7.83 x 10^(-14) s/s. From the measured P and P-dot we derive spin-down power E-dot = 2.2 x 10^(37) erg/s, magnetic field B = 2.0 x 10^(12) G, and characteristic age P/2P-dot = 10,460 yr. An image from the Chandra X-ray Observatory reveals a point source surrounded by centrally peaked diffuse emission that is contained within an incomplete radio shell. We assign the name G106.6+2.9 to this new supernova remnant, which is evidently a pulsar wind nebula. For a distance of 3 kpc estimated from X-ray absorption, the ratio of X-ray luminosity to spin-down power is ~8 x 10^(-5), smaller than that of most pulsars, but similar to the Vela pulsar. If PSR J2229+6114 is the counterpart of 3EG J2227+6122 then its efficiency of gamma-ray production, if isotropic, is 0.016 (d/3 kpc)^2. It obeys an established trend of gamma-ray efficiency among known gamma-ray pulsars which, in combination with the demonstrated absence of any other plausible counterpart for 3EG J2227+6122, makes the identification compelling. If confirmed, this identification bolsters the pulsar model for unidentified Galactic EGRET sources.Comment: 5 pages, 4 figures, accepted by The Astrophysical Journal Letter

    The Intrinsically X-ray Weak Quasar PHL 1811. II. Optical and UV Spectra and Analysis

    Full text link
    This is the second of two papers reporting observations and analysis of the unusually bright (m_b=14.4), luminous (M_B=-25.5), nearby (z=0.192) narrow-line quasar PHL 1811. The first paper reported that PHL 1811 is intrinsically X-ray weak, and presented a spectral energy distribution (SED). Here we present HST STIS optical and UV spectra, and ground-based optical spectra. The optical and UV line emission is very unusual. There is no evidence for forbidden or semiforbidden lines. The near-UV spectrum is dominated by very strong FeII and FeIII, and unusual low-ionization lines such as NaID and CaII H&K are observed. High-ionization lines are very weak; CIV has an equivalent width of 6.6A, a factor of ~5 smaller than measured from quasar composite spectra. An unusual feature near 1200A can be deblended in terms of Ly\alpha, NV, SiII, and CIII* using the blueshifted CIV profile as a template. Photoionization modeling shows that the unusual line emission can be explained qualitatively by the unusually soft SED. Principally, a low gas temperature results in inefficient emission of collisionally excited lines, including the semiforbidden lines generally used as density diagnostics. The emission resembles that of high-density gas; in both cases this is a consequence of inefficient cooling. PHL 1811 is very unusual, but we note that quasar surveys are generally biased against finding similar objects.Comment: Accepted for publication in ApJS. Full resolution figures available here: http://www.nhn.ou.edu/~leighly/phl1811_paper1.pd

    Follow-Up HST/STIS Spectroscopy of Three Candidate Tidal Disruption Events

    Full text link
    Large amplitude, high luminosity soft X-ray flares were detected by the ROSAT All-Sky Survey in several galaxies with no evidence for Seyfert activity in their ground-based optical spectra. These flares had the properties predicted for a tidal disruption event by a central supermassive black hole: soft X-ray spectrum, time-scale of months, and large X-ray luminosity (10^42 - 10^44 ergs s^-1). In order to evaluate the alternative hypothesis that these flares could have been some form of extreme AGN variability, we obtained follow-up optical spectroscopy of three of the flaring galaxies a decade later with the Space Telescope Imaging Spectrograph (STIS) and a narrow slit to search for or place stringent limits on the presence of any persistent Seyfert-like emission in their nuclei. Two of the galaxies, RX J1624.9+7554 and RX J1242.6-1119, show no evidence for emission lines or a non-stellar continuum in their Hubble Space Telescope (HST) nuclear spectra, consistent with their ground-based classification as inactive galaxies. They remain the most convincing as hosts of tidal disruption events. NGC 5905, previously known as a starburst H II galaxy due to its strong emission lines, has in its inner 0."1 a nucleus with narrow emission-line ratios requiring a Seyfert 2 classification. This weak Seyfert 2 nucleus in NGC 5905, which was masked by the many surrounding H II regions in ground-based spectra, requires a low level of prior non-stellar photoionization, thus raising some uncertainty about the nature of its X-ray flare, which may or may not have been a tidal disruption event. The absence of both broad emission lines and nuclear X-ray absorption in NGC 5905 also characterizes it as a ``true'' Seyfert 2 galaxy, yet one that has varied by more than a factor of 100 in X-rays.Comment: 25 pages,3 tables,8 figures. Accepted for publication in Ap
    • …
    corecore