17 research outputs found

    Prostaglandin E2 Produced by the Lung Augments the Effector Phase of Allergic Inflammation

    Get PDF
    Elevated PGE2 is a hallmark of most inflammatory lesions. This lipid mediator can induce the cardinal signs of inflammation, and the beneficial actions of non-steroidal anti-inflammatory drugs are attributed to inhibition of cyclooxygenase COX-1 and COX-2, enzymes essential in the biosynthesis of PGE2 from arachidonic acid. However, both clinical studies and rodent models suggest that, in the asthmatic lung, PGE2 acts to restrain the immune response and limit physiological change secondary to inflammation. To directly address the role of PGE2 in the lung, we examined the development of disease in mice lacking microsomal prostaglandin E synthase 1 (mPGES1), which converts COX-1/COX-2 derived PGH2 to PGE2. We show that mPGES1 determines PGE2 levels in the naïve lung and is required for increases in PGE2 after ovalbumin (OVA) induced allergy. While loss of either COX-1 or COX-2 increases the disease severity, surprisingly mPGES1 −/− mice show reduced inflammation. However, an increase in serum IgE is still observed in the mPGES1 −/− mice, suggesting that loss of PGE2 does not impair induction of a TH2 response. Furthermore, mPGES1 −/− mice expressing a transgenic OVA-specific T cell receptor are also protected, indicating that PGE2 acts primarily after challenge with inhaled antigen. PGE2 produced by the lung plays the critical role in this response, as loss of lung mPGES1 is sufficient to protect against disease. Together this supports a model in which mPGES1-dependent PGE2 produced by populations of cells native to the lung contributes to the effector phase of some allergic responses

    ONZIN deficiency attenuates contact hypersensitivity responses in mice

    Get PDF
    ONZIN is abundantly expressed in immune cells of both the myeloid and lymphoid lineage. Expression by lymphoid cells has been reported to further increase after cutaneous exposure of mice to antigens and haptens capable of inducing contact hypersensitivity, suggesting that ONZIN plays a critical role in this response. Here, we report that indeed ONZIN-deficient mice develop attenuated CHS to a number of different haptens. Dampened CHS responses correlated with a significant reduction in pro-inflammatory IL-6 at the challenge site in ONZIN-deficient animals compared to wild type controls. Together the study of these animals indicates that loss of ONZIN impacts the effector phase of the CHS response through the regulation of pro-inflammatory factors

    Coupling of COX-1 to mPGES1 for prostaglandin E 2 biosynthesis in the murine mammary gland

    Get PDF
    The mammary gland, like most tissues, produces measurable amounts of prostaglandin

    Microsomal prostaglandin E synthase-2 is not essential for in vivo prostaglandin E2 biosynthesis

    Get PDF
    Prostaglandin E2 (PGE2) plays an important role in the normal physiology of many organ systems. Increased levels of this lipid mediator are associated with many disease states, and it potently regulates inflammatory responses. Three enzymes capable of in vitro synthesis of PGE2 from the cyclooxygenase metabolite PGH2 have been described. Here, we examine the contribution of one of these enzymes to PGE2 production, mPges-2, which encodes microsomal prostaglandin synthase-2 (mPGES-2), by generating mice homozygous for the null allele of this gene. Loss of mPges-2 expression did not result in a measurable decrease in PGE2 levels in any tissue or cell type examined from healthy mice. Taken together, analysis of the mPGES-2 deficient mouse lines does not substantiate the contention that mPGES-2 is a PGE2 synthase

    Francisella tularensis

    No full text

    ONZIN deficiency attenuates contact hypersensitivity responses in mice

    No full text
    ONZIN is abundantly expressed in immune cells of both the myeloid and lymphoid lineage. Expression by lymphoid cells has been reported to further increase after cutaneous exposure of mice to antigens and haptens capable of inducing contact hypersensitivity, suggesting that ONZIN plays a critical role in this response. Here, we report that indeed ONZIN-deficient mice develop attenuated CHS to a number of different haptens. Dampened CHS responses correlated with a significant reduction in pro-inflammatory IL-6 at the challenge site in ONZIN-deficient animals compared to wild type controls. Together the study of these animals indicates that loss of ONZIN impacts the effector phase of the CHS response through the regulation of pro-inflammatory factors

    Beyond detoxification: Pleiotropic functions of multiple glutathione S-transferase isoforms protect mice against a toxic electrophile.

    No full text
    Environmental and endogenous electrophiles cause tissue damage through their high reactivity with endogenous nucleophiles such as DNA, proteins, and lipids. Protection against damage is mediated by glutathione (GSH) conjugation, which can occur spontaneously or be facilitated by the glutathione S-transferase (GST) enzymes. To determine the role of GST enzymes in protection against electrophiles as well as the role of specific GST families in mediating this protection, we exposed mutant mouse lines lacking the GSTP, GSTM, and/or GSTT enzyme families to the model electrophile acrylamide, a ubiquitous dietary contaminant known to cause adverse effects in humans. An analysis of urinary metabolites after acute acrylamide exposure identified the GSTM family as the primary mediator of GSH conjugation to acrylamide. However, surprisingly, mice lacking only this enzyme family did not show increased toxicity after an acute acrylamide exposure. Therefore, GSH conjugation is not the sole mechanism by which GSTs protect against the toxicity of this substrate. Given the prevalence of null GST polymorphisms in the human population (approximately 50% for GSTM1 and 20-50% for GSTT1), a substantial portion of the population may also have impaired acrylamide metabolism. However, our study also defines a role for GSTP and/or GSTT in protection against acrylamide mediated toxicity. Thus, while the canonical detoxification function of GSTs may be impaired in GSTM null individuals, disease risk secondary to acrylamide exposure may be mitigated through non-canonical pathways involving members of the GSTP and/or GSTT families

    Prostaglandin E 2

    No full text
    corecore