96 research outputs found

    Rigid Linear Nano-Actuator Self-Assembled from DNA

    Get PDF

    Olfactory learning alters navigation strategies and behavioral variability in C. elegans

    Full text link
    Animals adjust their behavioral response to sensory input adaptively depending on past experiences. The flexible brain computation is crucial for survival and is of great interest in neuroscience. The nematode C. elegans modulates its navigation behavior depending on the association of odor butanone with food (appetitive training) or starvation (aversive training), and will then climb up the butanone gradient or ignore it, respectively. However, the exact change in navigation strategy in response to learning is still unknown. Here we study the learned odor navigation in worms by combining precise experimental measurement and a novel descriptive model of navigation. Our model consists of two known navigation strategies in worms: biased random walk and weathervaning. We infer weights on these strategies by applying the model to worm navigation trajectories and the exact odor concentration it experiences. Compared to naive worms, appetitive trained worms up-regulate the biased random walk strategy, and aversive trained worms down-regulate the weathervaning strategy. The statistical model provides prediction with >90%>90 \% accuracy of the past training condition given navigation data, which outperforms the classical chemotaxis metric. We find that the behavioral variability is altered by learning, such that worms are less variable after training compared to naive ones. The model further predicts the learning-dependent response and variability under optogenetic perturbation of the olfactory neuron AWCON^\mathrm{ON}. Lastly, we investigate neural circuits downstream from AWCON^\mathrm{ON} that are differentially recruited for learned odor-guided navigation. Together, we provide a new paradigm to quantify flexible navigation algorithms and pinpoint the underlying neural substrates

    Inhibitory feedback from the motor circuit gates mechanosensory processing in C. elegans

    Full text link
    Animals must integrate sensory cues with their current behavioral context to generate a suitable response. How this integration occurs is poorly understood. Previously we developed high throughput methods to probe neural activity in populations of Caenorhabditis elegans and discovered that the animal's mechanosensory processing is rapidly modulated by the animal's locomotion. Specifically we found that when the worm turns it suppresses its mechanosensory-evoked reversal response. Here we report that C. elegans use inhibitory feedback from turning-associated neurons to provide this rapid modulation of mechanosensory processing. By performing high-throughput optogenetic perturbations triggered on behavior, we show that turning associated neurons SAA, RIV and/or SMB suppress mechanosensory-evoked reversals during turns. We find that activation of the gentle-touch mechanosensory neurons or of any of the interneurons AIZ, RIM, AIB and AVE during a turn is less likely to evoke a reversal than activation during forward movement. Inhibiting neurons SAA, RIV and SMB during a turn restores the likelihood with which mechanosensory activation evokes reversals. Separately, activation of premotor interneuron AVA evokes reversals regardless of whether the animal is turning or moving forward. We therefore propose that inhibitory signals from SAA, RIV and/or SMB gate mechanosensory signals upstream of neuron AVA. We conclude that C. elegans rely on inhibitory feedback from the motor circuit to modulate its response to sensory stimuli on fast timescales. This need for motor signals in sensory processing may explain the ubiquity in many organisms of motor-related neural activity patterns seen across the brain, including in sensory processing areas

    Simultaneous optogenetic manipulation and calcium imaging in freely moving C. elegans

    Get PDF
    A fundamental goal of systems neuroscience is to probe the dynamics of neural activity that drive behavior. Here we present an instrument to simultaneously manipulate neural activity via Channelrhodopsin, monitor neural response via GCaMP3, and observe behavior in freely moving C. elegans. We use the instrument to directly observe the relation between sensory stimuli, interneuron activity and locomotion in the mechanosensory circuit

    Correcting motion induced fluorescence artifacts in two-channel neural imaging

    Full text link
    Imaging neural activity in a behaving animal presents unique challenges in part because motion from an animal's movement creates artifacts in fluorescence intensity time-series that are difficult to distinguish from neural signals of interest. One approach to mitigating these artifacts is to image two channels; one that captures an activity-dependent fluorophore, such as GCaMP, and another that captures an activity-independent fluorophore such as RFP. Because the activity-independent channel contains the same motion artifacts as the activity-dependent channel, but no neural signals, the two together can be used to remove the artifacts. Existing approaches for this correction, such as taking the ratio of the two channels, do not account for channel independent noise in the measured fluorescence. Moreover, no systematic comparison has been made of existing approaches that use two-channel signals. Here, we present Two-channel Motion Artifact Correction (TMAC), a method which seeks to remove artifacts by specifying a generative model of the fluorescence of the two channels as a function of motion artifact, neural activity, and noise. We further present a novel method for evaluating ground-truth performance of motion correction algorithms by comparing the decodability of behavior from two types of neural recordings; a recording that had both an activity-dependent fluorophore (GCaMP and RFP) and a recording where both fluorophores were activity-independent (GFP and RFP). A successful motion-correction method should decode behavior from the first type of recording, but not the second. We use this metric to systematically compare five methods for removing motion artifacts from fluorescent time traces. We decode locomotion from a GCaMP expressing animal 15x more accurately on average than from control when using TMAC inferred activity and outperform all other methods of motion correction tested.Comment: 11 pages, 3 figure

    Prospective Evaluation of the Influence of Iterative Reconstruction on the Reproducibility of Coronary Calcium Quantification in Reduced Radiation Dose 320 Detector Row CT.

    Get PDF
    BACKGROUND: Coronary artery calcium (CAC) predicts coronary heart disease events and is important for individualized cardiac risk assessment. This report assesses the interscan variability of CT for coronary calcium quantification using image acquisition with standard and reduced radiation dose protocols and whether the use of reduced radiation dose acquisition with iterative reconstruction (IR; reduced-dose/IR ) allows for similar image quality and reproducibility when compared to standard radiation dose acquisition with filtered back projection (FBP; standard-dose/FBP ) on 320-detector row computed tomography (320-CT). METHODS: 200 consecutive patients (60 ± 9 years, 59% male) prospectively underwent two standard- and two reduced-dose acquisitions (800 total scans, 1600 reconstructions) using 320 slice CT and 120 kV tube voltage. Automated tube current modulation was used and for reduced-dose scans, prescribed tube current was lowered by 70%. Image noise and Agatston scores were determined and compared. RESULTS: Regarding stratification by Agatston score categories (0, 1-10, 11-100, 101-400, \u3e400), reduced-dose/IR versus standard-dose/FBP had excellent agreement at 89% (95% CI: 86-92%) with kappa 0.86 (95% CI: 0.81-0.90). Standard-dose/FBP rescan agreement was 93% (95% CI: 89-96%) with kappa = 0.91 (95% CI: 0.86-0.95) while reduced-dose/IR rescan agreement was similar at 91% (95% CI: 87-94%) with kappa 0.88 (95% CI: 0.83-0.93). Image noise was significantly higher but clinically acceptable for reduced-dose/IR (18 Hounsfield Unit [HU] mean) compared to standard-dose/FBP (16 HU; p \u3c 0.0001). Median radiation exposure was 74% lower for reduced- (0.37 mSv) versus standard-dose (1.4 mSv) acquisitions. CONCLUSION: Rescan agreement was excellent for reduced-dose image acquisition with iterative reconstruction and standard-dose acquisition with filtered back projection for the quantification of coronary calcium by CT. These methods make it possible to reduce radiation exposure by 74%. CLINICAL TRIAL REGISTRATION: URL: https://clinicaltrials.gov/ct2/show/NCT01621594. UNIQUE IDENTIFIER: NCT01621594
    • …
    corecore