132 research outputs found

    Inactivation of class II PI3K-C2 alpha induces leptin resistance, age-dependent insulin resistance and obesity in male mice

    Get PDF
    AIMS/HYPOTHESIS: While the class I phosphoinositide 3-kinases (PI3Ks) are well-documented positive regulators of metabolism, the involvement of class II PI3K isoforms (PI3K-C2Ī±, -C2Ī² and -C2Ī³) in metabolic regulation is just emerging. Organismal inactivation of PI3K-C2Ī² increases insulin signalling and sensitivity, whereas PI3K-C2Ī³ inactivation has a negative metabolic impact. In contrast, the role of PI3K-C2Ī± in organismal metabolism remains unexplored. In this study, we investigated whether kinase inactivation of PI3K-C2Ī± affects glucose metabolism in mice. METHODS: We have generated and characterised a mouse line with a constitutive inactivating knock-in (KI) mutation in the kinase domain of the gene encoding PI3K-C2Ī± (Pik3c2a). RESULTS: While homozygosity for kinase-dead PI3K-C2Ī± was embryonic lethal, heterozygous PI3K-C2Ī± KI mice were viable and fertile, with no significant histopathological findings. However, male heterozygous mice showed early onset leptin resistance, with a defect in leptin signalling in the hypothalamus, correlating with a mild, age-dependent obesity, insulin resistance and glucose intolerance. Insulin signalling was unaffected in insulin target tissues of PI3K-C2Ī± KI mice, in contrast to previous reports in which downregulation of PI3K-C2Ī± in cell lines was shown to dampen insulin signalling. Interestingly, no metabolic phenotypes were detected in female PI3K-C2Ī± KI mice at any age. CONCLUSIONS/INTERPRETATION: Our data uncover a sex-dependent role for PI3K-C2Ī± in the modulation of hypothalamic leptin action and systemic glucose homeostasis. ACCESS TO RESEARCH MATERIALS: All reagents are available upon request

    p16INK4a Suppression by Glucose Restriction Contributes to Human Cellular Lifespan Extension through SIRT1-Mediated Epigenetic and Genetic Mechanisms

    Get PDF
    Although caloric restriction (CR) has been shown to increase lifespan in various animal models, the mechanisms underlying this phenomenon have not yet been revealed. We developed an in vitro system to mimic CR by reducing glucose concentration in cell growth medium which excludes metabolic factors and allows assessment of the effects of CR at the cellular and molecular level. We monitored cellular proliferation of normal WI-38, IMR-90 and MRC-5 human lung fibroblasts and found that glucose restriction (GR) can inhibit cellular senescence and significantly extend cellular lifespan compared with cells receiving normal glucose (NG) in the culture medium. Moreover, GR decreased expression of p16INK4a (p16), a well-known senescence-related gene, in all of the tested cell lines. Over-expressed p16 resulted in early replicative senescence in glucose-restricted cells suggesting a crucial role of p16 regulation in GR-induced cellular lifespan extension. The decreased expression of p16 was partly due to GR-induced chromatin remodeling through effects on histone acetylation and methylation of the p16 promoter. GR resulted in an increased expression of SIRT1, a NAD-dependent histone deacetylase, which has positive correlation with CR-induced longevity. The elevated SIRT1 was accompanied by enhanced activation of the Akt/p70S6K1 signaling pathway in response to GR. Furthermore, knockdown of SIRT1 abolished GR-induced p16 repression as well as Akt/p70S6K1 activation implying that SIRT1 may affect p16 repression through direct deacetylation effects and indirect regulation of Akt/p70S6K1 signaling. Collectively, these results provide new insights into interactions between epigenetic and genetic mechanisms on CR-induced longevity that may contribute to anti-aging approaches and also provide a general molecular model for studying CR in vitro in mammalian systems

    Expression and Regulation of Cyclic Nucleotide Phosphodiesterases in Human and Rat Pancreatic Islets

    Get PDF
    As shown by transgenic mouse models and by using phosphodiesterase 3 (PDE3) inhibitors, PDE3B has an important role in the regulation of insulin secretion in pancreatic Ī²-cells. However, very little is known about the regulation of the enzyme. Here, we show that PDE3B is activated in response to high glucose, insulin and cAMP elevation in rat pancreatic islets and INS-1 (832/13) cells. Activation by glucose was not affected by the presence of diazoxide. PDE3B activation was coupled to an increase as well as a decrease in total phosphorylation of the enzyme. In addition to PDE3B, several other PDEs were detected in human pancreatic islets: PDE1, PDE3, PDE4C, PDE7A, PDE8A and PDE10A. We conclude that PDE3B is activated in response to agents relevant for Ī²-cell function and that activation is linked to increased as well as decreased phosphorylation of the enzyme. Moreover, we conclude that several PDEs are present in human pancreatic islets

    The pancreatic beta cell surface proteome

    Get PDF
    The pancreatic beta cell is responsible for maintaining normoglycaemia by secreting an appropriate amount of insulin according to blood glucose levels. The accurate sensing of the beta cell extracellular environment is therefore crucial to this endocrine function and is transmitted via its cell surface proteome. Various surface proteins that mediate or affect beta cell endocrine function have been identified, including growth factor and cytokine receptors, transporters, ion channels and proteases, attributing important roles to surface proteins in the adaptive behaviour of beta cells in response to acute and chronic environmental changes. However, the largely unknown composition of the beta cell surface proteome is likely to harbour yet more information about these mechanisms and provide novel points of therapeutic intervention and diagnostic tools. This article will provide an overview of the functional complexity of the beta cell surface proteome and selected surface proteins, outline the mechanisms by which their activity may be modulated, discuss the methods and challenges of comprehensively mapping and studying the beta cell surface proteome, and address the potential of this interesting subproteome for diagnostic and therapeutic applications in human disease

    In Vitro Cellular Adaptations of Indicators of Longevity in Response to Treatment with Serum Collected from Humans on Calorie Restricted Diets

    Get PDF
    Calorie restriction (CR) produces several health benefits and increases lifespan in many species. Studies suggest that alternate-day fasting (ADF) and exercise can also provide these benefits. Whether CR results in lifespan extension in humans is not known and a direct investigation is not feasible. However, phenotypes observed in CR animals when compared to ad libitum fed (AL) animals, including increased stress resistance and changes in protein expression, can be simulated in cells cultured with media supplemented with blood serum from CR and AL animals. Two pilot studies were undertaken to examine the effects of ADF and CR on indicators of health and longevity in humans. In this study, we used sera collected from those studies to culture human hepatoma cells and assessed the effects on growth, stress resistance and gene expression. Cells cultured in serum collected at the end of the dieting period were compared to cells cultured in serum collected at baseline (before the dieting period). Cells cultured in serum from ADF participants, showed a 20% increase in Sirt1 protein which correlated with reduced triglyceride levels. ADF serum also induced a 9% decrease in proliferation and a 25% increase in heat resistance. Cells cultured in serum from CR participants induced an increase in Sirt1 protein levels by 17% and a 30% increase in PGC-1Ī± mRNA levels. This first in vitro study utilizing human serum to examine effects on markers of health and longevity in cultured cells resulted in increased stress resistance and an up-regulation of genes proposed to be indicators of increased longevity. The use of this in vitro technique may be helpful for predicting the potential of CR, ADF and other dietary manipulations to affect markers of longevity in humans

    GABA Coordinates with Insulin in Regulating Secretory Function in Pancreatic INS-1 Ī²-Cells

    Get PDF
    Pancreatic islet Ī²-cells produce large amounts of Ī³-aminobutyric acid (GABA), which is co-released with insulin. GABA inhibits glucagon secretion by hyperpolarizing Ī±-cells via type-A GABA receptors (GABAARs). We and others recently reported that islet Ī²-cells also express GABAARs and that activation of GABAARs increases insulin release. Here we investigate the effects of insulin on the GABA-GABAAR system in the pancreatic INS-1 cells using perforated-patch recording. The results showed that GABA produces a rapid inward current and depolarizes INS-1 cells. However, pre-treatment of the cell with regular insulin (1 ĀµM) suppressed the GABA-induced current (IGABA) by 43%. Zinc-free insulin also suppressed IGABA to the same extent of inhibition by regular insulin. The inhibition of IGABA occurs within 30 seconds after application of insulin. The insulin-induced inhibition of IGABA persisted in the presence of PI3-kinase inhibitor, but was abolished upon inhibition of ERK, indicating that insulin suppresses GABAARs through a mechanism that involves ERK activation. Radioimmunoassay revealed that the secretion of C-peptide was enhanced by GABA, which was blocked by pre-incubating the cells with picrotoxin (50 ĀµM, p<0.01) and insulin (1 ĀµM, p<0.01), respectively. Together, these data suggest that autocrine GABA, via activation of GABAARs, depolarizes the pancreatic Ī²-cells and enhances insulin secretion. On the other hand, insulin down-regulates GABA-GABAAR signaling presenting a feedback mechanism for fine-tuning Ī²-cell secretion

    Neuronal Sirt3 Protects against Excitotoxic Injury in Mouse Cortical Neuron Culture

    Get PDF
    BACKGROUND: Sirtuins (Sirt), a family of nicotinamide adenine nucleotide (NAD) dependent deacetylases, are implicated in energy metabolism and life span. Among the known Sirt isoforms (Sirt1-7), Sirt3 was identified as a stress responsive deacetylase recently shown to play a role in protecting cells under stress conditions. Here, we demonstrated the presence of Sirt3 in neurons, and characterized the role of Sirt3 in neuron survival under NMDA-induced excitotoxicity. METHODOLOGY/PRINCIPAL FINDINGS: To induce excitotoxic injury, we exposed primary cultured mouse cortical neurons to NMDA (30 ĀµM). NMDA induced a rapid decrease of cytoplasmic NAD (but not mitochondrial NAD) in neurons through poly (ADP-ribose) polymerase-1 (PARP-1) activation. Mitochondrial Sirt3 was increased following PARP-1 mediated NAD depletion, which was reversed by either inhibition of PARP-1 or exogenous NAD. We found that massive reactive oxygen species (ROS) produced under this NAD depleted condition mediated the increase in mitochondrial Sirt3. By transfecting primary neurons with a Sirt3 overexpressing plasmid or Sirt3 siRNA, we showed that Sirt3 is required for neuroprotection against excitotoxicity. CONCLUSIONS: This study demonstrated for the first time that mitochondrial Sirt3 acts as a prosurvival factor playing an essential role to protect neurons under excitotoxic injury

    Defining novel functions for cerebrospinal fluid in ALS pathophysiology

    Get PDF
    Despite the considerable progress made towards understanding ALS pathophysiology, several key features of ALS remain unexplained, from its aetiology to its epidemiological aspects. The glymphatic system, which has recently been recognised as a major clearance pathway for the brain, has received considerable attention in several neurological conditions, particularly Alzheimer's disease. Its significance in ALS has, however, been little addressed. This perspective article therefore aims to assess the possibility of CSF contribution in ALS by considering various lines of evidence, including the abnormal composition of ALS-CSF, its toxicity and the evidence for impaired CSF dynamics in ALS patients. We also describe a potential role for CSF circulation in determining disease spread as well as the importance of CSF dynamics in ALS neurotherapeutics. We propose that a CSF model could potentially offer additional avenues to explore currently unexplained features of ALS, ultimately leading to new treatment options for people with ALS.</p

    Epigenetic regulation of caloric restriction in aging

    Get PDF
    The molecular mechanisms of aging are the subject of much research and have facilitated potential interventions to delay aging and aging-related degenerative diseases in humans. The aging process is frequently affected by environmental factors, and caloric restriction is by far the most effective and established environmental manipulation for extending lifespan in various animal models. However, the precise mechanisms by which caloric restriction affects lifespan are still not clear. Epigenetic mechanisms have recently been recognized as major contributors to nutrition-related longevity and aging control. Two primary epigenetic codes, DNA methylation and histone modification, are believed to dynamically influence chromatin structure, resulting in expression changes of relevant genes. In this review, we assess the current advances in epigenetic regulation in response to caloric restriction and how this affects cellular senescence, aging and potential extension of a healthy lifespan in humans. Enhanced understanding of the important role of epigenetics in the control of the aging process through caloric restriction may lead to clinical advances in the prevention and therapy of human aging-associated diseases
    • ā€¦
    corecore