12 research outputs found

    Sequential expression of multiple POU proteins during amphibian early development.

    No full text
    The octamer motif is a common cis-acting regulatory element that functions in the transcriptional control regions of diverse genes and in viral origins of replication. The ability of a consensus octamer motif to stimulate transcription of a histone H2B promoter in frog oocytes suggests that oocytes contain a transcriptionally active octamer-binding protein(s). We show here that frog oocytes and developing embryos contain multiple octamer-binding proteins that are expressed in a sequential manner during early development. Sequences encoding three novel octamer binding-proteins were isolated from Xenopus cDNA libraries by virtue of their homology with the DNA binding (POU) domain of Oct-1. The predicted POU domains of these proteins were most highly related to mammalian Oct-3 (also termed Oct-4), a germ line-specific gene required for mouse early development. Transcripts from these amphibian POU-domain genes were most abundant during early embryogenesis and absent from most adult somatic tissues. One of the genes, termed Oct-60, was primarily expressed as a maternal transcript localized in the animal hemisphere in mature oocytes. The protein encoded by this gene was present in oocytes and early embryos until the gastrula stage of development. Transcripts from a second POU-domain gene, Oct-25, were present at low levels in oocytes and early embryos and were dramatically upregulated during early gastrulation. In contrast to the Oct-60 mRNA, translation of Oct-25 mRNA appeared to be developmentally regulated, since the corresponding protein was detected in embryos during gastrulation but not in oocytes or rapidly cleaving embryos. Transcripts from the third POU protein gene, Oct-91, were induced after the midblastula transition and reached their highest levels of accumulation during late gastrulation. The expression of all three genes decreased during late gastrulation and early neurulation. By analogy with other members of the POU-domain gene family, the products of these genes may play critical roles in the determination of cell fate and the regulation of cell proliferation

    Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription

    No full text
    The remarkable stability of gene expression in somatic cells is exemplified by the way memory of an active gene state is retained when an endoderm cell nucleus is transplanted to an enucleated egg. Here we analyse the mechanism of a similar example of epigenetic memory. We find that memory can persist through 24 cell divisions in the absence of transcription and applies to the expression of the myogenic gene MyoD in non-muscle cell lineages of nuclear transplant embryos. We show that memory is not explained by the methylation of promoter DNA. However, we demonstrate that epigenetic memory correlates with the association of histone H3.3 with the MyoD promoter in embryos that display memory but not in those where memory has been lost. The association of a mutated histone H3.3 (H3.3 E4, which lacks the methylatable H3.3 lysine 4) with promoter DNA eliminates memory, indicating a requirement of H3.3 K4 for memory. We also show that overexpression of H3.3 can enhance memory in transplanted nuclei. We therefore conclude that the association of histone H3.3 with the MyoD promoter makes a necessary contribution to this example of memory. Hence, we suggest that epigenetic memory helps to stabilize gene expression in normal development; it might also help to account for the inefficient reprogramming in some transplanted nuclei.link_to_subscribed_fulltex
    corecore