412 research outputs found
Background due to stored electrons following nuclear decays in the KATRIN spectrometers and its impact on the neutrino mass sensitivity
The KATRIN experiment is designed to measure the absolute neutrino mass scale
with a sensitivity of 200 meV at 90% C.L. by high resolution tritium
beta-spectroscopy. A low background level of 10 mHz at the beta-decay endpoint
is required in order to achieve the design sensitivity. In this paper we
discuss a novel background source arising from magnetically trapped keV
electrons in electrostatic retarding spectrometers. The main sources of these
electrons are alpha-decays of the radon isotopes (219,220)Rn as well as
beta-decays of tritium in the volume of the spectrometers. We characterize the
expected background signal by extensive MC simulations and investigate the
impact on the KATRIN neutrino mass sensitivity. From these results we refine
design parameters for the spectrometer vacuum system and propose active
background reduction methods to meet the stringent design limits for the
overall background rate
Stochastic Heating by ECR as a Novel Means of Background Reduction in the KATRIN Spectrometers
The primary objective of the KATRIN experiment is to probe the absolute
neutrino mass scale with a sensitivity of 200 meV (90% C.L.) by precision
spectroscopy of tritium beta-decay. To achieve this, a low background of the
order of 10^(-2) cps in the region of the tritium beta-decay endpoint is
required. Measurements with an electrostatic retarding spectrometer have
revealed that electrons, arising from nuclear decays in the volume of the
spectrometer, are stored over long time periods and thereby act as a major
source of background exceeding this limit. In this paper we present a novel
active background reduction method based on stochastic heating of stored
electrons by the well-known process of electron cyclotron resonance (ECR). A
successful proof-of-principle of the ECR technique was demonstrated in test
measurements at the KATRIN pre-spectrometer, yielding a large reduction of the
background rate. In addition, we have carried out extensive Monte Carlo
simulations to reveal the potential of the ECR technique to remove all trapped
electrons within negligible loss of measurement time in the main spectrometer.
This would allow the KATRIN experiment attaining its full physics potential
Commissioning of the vacuum system of the KATRIN Main Spectrometer
The KATRIN experiment will probe the neutrino mass by measuring the
beta-electron energy spectrum near the endpoint of tritium beta-decay. An
integral energy analysis will be performed by an electro-static spectrometer
(Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a
volume of 1240 m^3, and a complex inner electrode system with about 120000
individual parts. The strong magnetic field that guides the beta-electrons is
provided by super-conducting solenoids at both ends of the spectrometer. Its
influence on turbo-molecular pumps and vacuum gauges had to be considered. A
system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter
strips has been deployed and was tested during the commissioning of the
spectrometer. In this paper the configuration, the commissioning with bake-out
at 300{\deg}C, and the performance of this system are presented in detail. The
vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is
demonstrated that the performance of the system is already close to these
stringent functional requirements for the KATRIN experiment, which will start
at the end of 2016.Comment: submitted for publication in JINST, 39 pages, 15 figure
Feasibility studies of the time-like proton electromagnetic form factor measurements with PANDA at FAIR
The possibility of measuring the proton electromagnetic form factors in the
time-like region at FAIR with the \PANDA detector is discussed. Detailed
simulations on signal efficiency for the annihilation of into a
lepton pair as well as for the most important background channels have been
performed. It is shown that precision measurements of the differential cross
section of the reaction can be obtained in a wide
angular and kinematical range. The individual determination of the moduli of
the electric and magnetic proton form factors will be possible up to a value of
momentum transfer squared of (GeV/c). The total cross section will be measured up to (GeV/c).
The results obtained from simulated events are compared to the existing data.
Sensitivity to the two photons exchange mechanism is also investigated.Comment: 12 pages, 4 tables, 8 figures Revised, added details on simulations,
4 tables, 9 figure
Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR
Simulation results for future measurements of electromagnetic proton form
factors at \PANDA (FAIR) within the PandaRoot software framework are reported.
The statistical precision with which the proton form factors can be determined
is estimated. The signal channel is studied on the basis
of two different but consistent procedures. The suppression of the main
background channel, , is studied.
Furthermore, the background versus signal efficiency, statistical and
systematical uncertainties on the extracted proton form factors are evaluated
using two different procedures. The results are consistent with those of a
previous simulation study using an older, simplified framework. However, a
slightly better precision is achieved in the PandaRoot study in a large range
of momentum transfer, assuming the nominal beam conditions and detector
performance
Observation of in
Using a sample of events recorded with
the BESIII detector at the symmetric electron positron collider BEPCII, we
report the observation of the decay of the charmonium state
into a pair of mesons in the process
. The branching fraction is measured for the first
time to be , where the first uncertainty is
statistical, the second systematic and the third is from the uncertainty of
. The mass and width of the are
determined as MeV/ and
MeV.Comment: 13 pages, 6 figure
Evidence of a resonant structure in the cross section between 4.05 and 4.60 GeV
The cross section of the process for
center-of-mass energies from 4.05 to 4.60~GeV is measured precisely using data
samples collected with the BESIII detector operating at the BEPCII storage
ring.
Two enhancements are clearly visible in the cross section around 4.23 and
4.40~GeV.
Using several models to describe the dressed cross section yields stable
parameters for the first enhancement, which has a mass of 4228.6 \pm 4.1 \pm
6.3 \un{MeV}/c^2 and a width of 77.0 \pm 6.8 \pm 6.3 \un{MeV}, where the
first uncertainties are statistical and the second ones are systematic.
Our resonant mass is consistent with previous observations of the
state and the theoretical prediction of a molecule.
This result is the first observation of associated with an
open-charm final state.
Fits with three resonance functions with additional , ,
, , or a new resonance, do not show significant
contributions from either of these resonances. The second enhancement is not
from a single known resonance. It could contain contributions from
and other resonances, and a detailed amplitude analysis is required to better
understand this enhancement
Observation of the -Annihilation Decay and Evidence for
We report on the observation of the -annihilation decay and the evidence for with a data sample corresponding to an integrated luminosity of 3.19
fb collected with the BESIII detector at the center-of-mass energy
GeV. We obtain the branching fractions
and , respectively
- …