16 research outputs found
Stochastic excitation of acoustic modes in stars
For more than ten years, solar-like oscillations have been detected and
frequencies measured for a growing number of stars with various characteristics
(e.g. different evolutionary stages, effective temperatures, gravities, metal
abundances ...).
Excitation of such oscillations is attributed to turbulent convection and
takes place in the uppermost part of the convective envelope. Since the
pioneering work of Goldreich & Keely (1977), more sophisticated theoretical
models of stochastic excitation were developed, which differ from each other
both by the way turbulent convection is modeled and by the assumed sources of
excitation. We review here these different models and their underlying
approximations and assumptions.
We emphasize how the computed mode excitation rates crucially depend on the
way turbulent convection is described but also on the stratification and the
metal abundance of the upper layers of the star. In turn we will show how the
seismic measurements collected so far allow us to infer properties of turbulent
convection in stars.Comment: Notes associated with a lecture given during the fall school
organized by the CNRS and held in St-Flour (France) 20-24 October 2008 ; 39
pages ; 11 figure
Seismology of the Sun : Inference of Thermal, Dynamic and Magnetic Field Structures of the Interior
Recent overwhelming evidences show that the sun strongly influences the
Earth's climate and environment. Moreover existence of life on this Earth
mainly depends upon the sun's energy. Hence, understanding of physics of the
sun, especially the thermal, dynamic and magnetic field structures of its
interior, is very important. Recently, from the ground and space based
observations, it is discovered that sun oscillates near 5 min periodicity in
millions of modes. This discovery heralded a new era in solar physics and a
separate branch called helioseismology or seismology of the sun has started.
Before the advent of helioseismology, sun's thermal structure of the interior
was understood from the evolutionary solution of stellar structure equations
that mimicked the present age, mass and radius of the sun. Whereas solution of
MHD equations yielded internal dynamics and magnetic field structure of the
sun's interior. In this presentation, I review the thermal, dynamic and
magnetic field structures of the sun's interior as inferred by the
helioseismology.Comment: To be published in the proceedings of the meeting "3rd International
Conference on Current Developments in Atomic, Molecular, Optical and Nano
Physics with Applications", December 14-16, 2011, New Delhi, Indi
Perspectives in Global Helioseismology, and the Road Ahead
We review the impact of global helioseismology on key questions concerning
the internal structure and dynamics of the Sun, and consider the exciting
challenges the field faces as it enters a fourth decade of science
exploitation. We do so with an eye on the past, looking at the perspectives
global helioseismology offered in its earlier phases, in particular the
mid-to-late 1970s and the 1980s. We look at how modern, higher-quality, longer
datasets coupled with new developments in analysis, have altered, refined, and
changed some of those perspectives, and opened others that were not previously
available for study. We finish by discussing outstanding challenges and
questions for the field.Comment: Invited review; to appear in Solar Physics (24 pages, 6 figures