5,302 research outputs found

    Particle-number conserving analysis for the 2-quasiparticle and high-KK multi-quasiparticle states in doubly-odd 174,176{}^{174, 176}Lu

    Full text link
    Two-quasiparticle bands and low-lying excited high-KK four-, six-, and eight-quasiparticle bands in the doubly-odd 174,176{}^{174, 176}Lu are analyzed by using the cranked shell model (CSM) with the pairing correlations treated by a particle-number conserving (PNC) method, in which the blocking effects are taken into account exactly. The proton and neutron Nilsson level schemes for 174,176{}^{174, 176}Lu are taken from the adjacent odd-AA Lu and Hf isotopes, which are adopted to reproduce the experimental bandhead energies of the one-quasiproton and one-quasineutron bands of these odd-AA Lu and Hf nuclei, respectively. Once the quasiparticle configurations are determined, the experimental bandhead energies and the moments of inertia of these two- and multi-quasiparticle bands are well reproduced by PNC-CSM calculations. The Coriolis mixing of the low-KK (K=∣Ω1−Ω2∣K=|\Omega_1-\Omega_2|) two-quasiparticle band of the Gallagher-Moszkowski doublet with one nucleon in the Ω=1/2\Omega = 1/2 orbital is analyzed.Comment: 8 pages, 5 figures, 2 tables, to be published at Chinese Physics

    System calibration method for Fourier ptychographic microscopy

    Full text link
    Fourier ptychographic microscopy (FPM) is a recently proposed quantitative phase imaging technique with high resolution and wide field-of-view (FOV). In current FPM imaging platforms, systematic error sources come from the aberrations, LED intensity fluctuation, parameter imperfections and noise, which will severely corrupt the reconstruction results with artifacts. Although these problems have been researched and some special methods have been proposed respectively, there is no method to solve all of them. However, the systematic error is a mixture of various sources in the real situation. It is difficult to distinguish a kind of error source from another due to the similar artifacts. To this end, we report a system calibration procedure, termed SC-FPM, based on the simulated annealing (SA) algorithm, LED intensity correction and adaptive step-size strategy, which involves the evaluation of an error matric at each iteration step, followed by the re-estimation of accurate parameters. The great performance has been achieved both in simulation and experiments. The reported system calibration scheme improves the robustness of FPM and relaxes the experiment conditions, which makes the FPM more pragmatic.Comment: 18 pages, 9 figure
    • …
    corecore