64 research outputs found

    Advanced NOMA Assisted Semi-Grant-Free Transmission Schemes for Randomly Distributed Users

    Full text link
    Non-orthogonal multiple access (NOMA) assisted semi-grant-free (SGF) transmission has recently received significant research attention due to its outstanding ability of serving grant-free (GF) users with grant-based (GB) users' spectrum, {\color{blue}which can greatly improve the spectrum efficiency and effectively relieve the massive access problem of 5G and beyond networks. In this paper, we investigate the performance of SGF schemes under more practical settings.} Firstly, we study the outage performance of the best user scheduling SGF scheme (BU-SGF) by considering the impacts of Rayleigh fading, path loss, and random user locations. Then, a fair SGF scheme is proposed by applying cumulative distribution function (CDF)-based scheduling (CS-SGF), which can also make full use of multi-user diversity. Moreover, by employing the theories of order statistics and stochastic geometry, we analyze the outage performances of both BU-SGF and CS-SGF schemes. Results show that full diversity orders can be achieved only when the served users' data rate is capped, which severely limit the rate performance of SGF schemes. To further address this issue, we propose a distributed power control strategy to relax such data rate constraint, and derive closed-form expressions of the two schemes' outage performances under this strategy. Finally, simulation results validate the fairness performance of the proposed CS-SGF scheme, the effectiveness of the power control strategy, and the accuracy of the theoretical analyses.Comment: 41 pages, 8 figure

    Outage Performance of Uplink Rate Splitting Multiple Access with Randomly Deployed Users

    Full text link
    With the rapid proliferation of smart devices in wireless networks, more powerful technologies are expected to fulfill the network requirements of high throughput, massive connectivity, and diversify quality of service. To this end, rate splitting multiple access (RSMA) is proposed as a promising solution to improve spectral efficiency and provide better fairness for the next-generation mobile networks. In this paper, the outage performance of uplink RSMA transmission with randomly deployed users is investigated, taking both user scheduling schemes and power allocation strategies into consideration. Specifically, the greedy user scheduling (GUS) and cumulative distribution function (CDF) based user scheduling (CUS) schemes are considered, which could maximize the rate performance and guarantee scheduling fairness, respectively. Meanwhile, we re-investigate cognitive power allocation (CPA) strategy, and propose a new rate fairness-oriented power allocation (FPA) strategy to enhance the scheduled users' rate fairness. By employing order statistics and stochastic geometry, an analytical expression of the outage probability for each scheduling scheme combining power allocation is derived to characterize the performance. To get more insights, the achieved diversity order of each scheme is also derived. Theoretical results demonstrate that both GUS and CUS schemes applying CPA or FPA strategy can achieve full diversity orders, and the application of CPA strategy in RSMA can effectively eliminate the secondary user's diversity order constraint from the primary user. Simulation results corroborate the accuracy of the analytical expressions, and show that the proposed FPA strategy can achieve excellent rate fairness performance in high signal-to-noise ratio region.Comment: 38 pages,8 figure

    Check on the features of potted 20-inch PMTs with 1F3 electronics prototype at Pan-Asia

    Full text link
    The Jiangmen underground neutrino observatory (JUNO) is a neutrino project with a 20-kton liquid scintillator detector located at 700-m underground. The large 20-inch PMTs are one of the crucial components of the JUNO experiment aiming to precision neutrino measurements with better than 3% energy resolution at 1 MeV. The excellent energy resolution and a large fiducial volume provide many exciting opportunities for addressing important topics in neutrino and astro-particle physics. With the container #D at JUNO Pan-Asia PMT testing and potting station, the features of waterproof potted 20-inch PMTs were measured with JUNO 1F3 electronics prototype in waveform and charge, which are valuable for better understanding on the performance of the waterproof potted PMTs and the JUNO 1F3 electronics. In this paper, basic features of JUNO 1F3 electronics prototype run at Pan-Asia will be introduced, followed by an analysis of the waterproof potted 20-inch PMTs and a comparison with the results from commercial electronics used by the container #A and #B

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Integrated Optimization of Mixed Cargo Packing and Cargo Location Assignment in Automated Storage and Retrieval Systems

    No full text
    To improve the delivery efficiency of automated storage and retrieval system, the problem of the integrated optimization of mixed cargo packing and cargo location assignment is addressed. An integrated optimization model of mixed cargo packing and location assignments with the shortest time for the stacker in a certain historical period is established and is transformed into a conditional packing problem. An improved hybrid genetic algorithm based on a group coding method is designed to solve the problem. When the initial population is generated, a new heuristic algorithm is designed to improve the convergence speed of the genetic algorithm considering the correlation and frequency of the goods outbound. A heuristic algorithm for a two-dimensional rectangular-packing problem is designed to determine whether a variety of goods can be mixed in packing. Taking actual data from an automated storage and retrieval system for an aviation food company as an example, the established model and design algorithm are verified and the influence of changes in the outbound delivery orders on the optimization result is analyzed. The results show that compared to the method of separate storage of goods based on cube-per-order index rules and a phased optimization method of mixed storage of goods, an integrated optimization method of mixed cargo packing and location assignment can improve the outbound delivery efficiency of the stacking machine by 11.43–25.98% and 1.73–5.51%, respectively, and reduce the cargo location used by 50–55% and 0–10%, respectively. The stronger the correlation of the goods leaving a warehouse, the greater the potential of the design method in this paper to improve the efficiency of the stacker

    Optimization of Storage Location Assignment in Tier-To-Tier Shuttle-Based Storage and Retrieval Systems Based on Mixed Storage

    No full text
    To improve the efficiency of tier-to-tier shuttle-based storage and retrieval system (SBS/RS), the optimization problem of the location allocation based on the mixed storage of goods is proposed. Considering the effect of warehouse operation scheduling and batch outbound allocation on the location allocation, an optimization model with the shortest outbound time of all outbound orders in a certain historical period is established. The optimization model consists of two stages: location allocation and job scheduling. A two-layer genetic algorithm is designed to solve the model. The first layer is used to solve the location allocation, and the coding method is group coding; the second layer is used for job scheduling, and the coding mode is real number coding. When the population is initialized during the location allocation phase, the BFD algorithm is used to improve the convergence velocity of the algorithm. Taking the actual data of a tier-to-tier SBS/RS of an aviation food company as an example, the established model and design algorithm were verified, and the different batch intervals of each cargo space for storing different types of goods and outbound were analyzed. The optimization effects of the algorithm are compared, and the effects of considering the job scheduling and not considering the job scheduling on the location allocation are compared. The results show that based on the cargo allocation strategy of cargo mixed storage, the outbound efficiency can be improved by about 20%. Considering job scheduling, the efficiency of warehousing is improved by about 5% compared with the optimization of warehouse allocation without job scheduling, where the efficiency of delivery is increased by about 6%

    Mechanism and Application of Static Fracturing Technology on Deep Working Face

    No full text
    Static fracturing technology uses chemical expansion agents to fracture roofs. With the aim of fracturing corner roofs on deep working faces, in this study, the static fracturing technology was investigated through theoretical analysis, laboratory experiments, numerical calculations, and field practice. The theoretical analysis and experiments demonstrated that the swelling force increased with a decrease in the fracturing hole spacing, and the optimal water-cement ratio was 0.33. Twelve groups of FLAC3D models were designed using SPSSAU. The results revealed that the optimal fracturing effect was achieved when the hole diameter was 60 mm, hole spacing was 40 cm, and hole depth was 6 m. The fracturing effect of hard corner roofs was monitored by peering into the borehole and evaluating the support resistance. Thus, it can be concluded that within the fracturing range, internal fissures in the rock stratum are developed and linked to each other. The support pressure was the highest, 7 h after grouting, with a value of approximately 26.1 MPa, and then decreased gradually to 17.58 MPa, indicating that the static fracturing technology attained the expected results

    Research on Rock Strength Test Based on Electro-Hydraulic Servo Point Load Instrument

    No full text
    A new electro-hydraulic servo point load instrument was designed to address the problem that the existing point load instrument cannot be loaded continuously and uniformly; different loading rates (using three loading rates: 0.1, 0.5, 1.0 kN/s) were conducted on fine-crystalline granite, coarse-crystalline granite, and siltstone (each rock sample contains four sizes: 203, 303, 403, 503 mm3) for point load tests. Firstly, the influence of loading rate on the axial stress distribution of rock sample loading was investigated in conjunction with the rock strength damage theory. Next, the influence of rock sample size and loading rate on different standard point load strength evaluation methods was analyzed to find a reasonable evaluation method and loading rate and range of rock sample size. Finally, the relationship between standard point load strength and uniaxial compressive strength was analyzed on this basis to obtain its empirical conversion formula. The results show that: (1) With the increase in the loading rate of point load, the tensile and compressive stresses in the loading axis increase, and the compressive stresses near the center of the loading axis of the rock sample are more influenced by the loading rate; the standard point load strength increases with the increase in the loading rate, but the increase in the standard point load strength decreases when the loading rate increases to a certain range. (2) With the increase in size, the standard point load strength solved by method I, method III, and method IV has an obvious size effect, while the size effect of standard point load strength solved by method II is not obvious. (3) The conversion factors of fine-crystalline granite, coarse-crystalline granite, and siltstone were obtained by zero-intercept linear regression analysis as 16.80, 15.32, and 14.60, respectively, which indicated that the conversion factors of rocks with high strength were higher than those of rocks with low strength. The present research results can provide theoretical support for revising the existing point load strength calculation equations
    • …
    corecore