25,321 research outputs found
Object Discovery via Cohesion Measurement
Color and intensity are two important components in an image. Usually, groups
of image pixels, which are similar in color or intensity, are an informative
representation for an object. They are therefore particularly suitable for
computer vision tasks, such as saliency detection and object proposal
generation. However, image pixels, which share a similar real-world color, may
be quite different since colors are often distorted by intensity. In this
paper, we reinvestigate the affinity matrices originally used in image
segmentation methods based on spectral clustering. A new affinity matrix, which
is robust to color distortions, is formulated for object discovery. Moreover, a
Cohesion Measurement (CM) for object regions is also derived based on the
formulated affinity matrix. Based on the new Cohesion Measurement, a novel
object discovery method is proposed to discover objects latent in an image by
utilizing the eigenvectors of the affinity matrix. Then we apply the proposed
method to both saliency detection and object proposal generation. Experimental
results on several evaluation benchmarks demonstrate that the proposed CM based
method has achieved promising performance for these two tasks.Comment: 14 pages, 14 figure
- …