18,932 research outputs found

    Thermal Logic Gates: Computation with phonons

    Full text link
    Logic gates are basic digital elements for computers. We build up thermal logic gates that can perform similar operations as their electronic counterparts. The thermal logic gates are based on the nonlinear lattices, which exhibit very intriguing phenomena due to their temperature dependent power spectra. We demonstrate that phonons, the heat carriers, can be also used to carry information and processed accordingly. The possibility of nanoscale experiment is discussed.Comment: 5 pages, 5 figures. To appear in Phys. Rev. Let

    A Herschel Study of 24 micron-Selected AGNs and Their Host Galaxies

    Get PDF
    We present a sample of 290 24-micron-selected active galactic nuclei (AGNs) mostly at z ~ 0.3 -- 2.5, within 5.2 square degrees distributed as 25' X 25' fields around each of 30 galaxy clusters in the Local Cluster Substructure Survey (LoCuSS). The sample is nearly complete to 1 mJy at 24 microns, and has a rich multi-wavelength set of ancillary data; 162 are detected by Herschel. We use spectral templates for AGNs, stellar populations, and infrared emission by star forming galaxies to decompose the spectral energy distributions (SEDs) of these AGNs and their host galaxies, and estimate their star formation rates (SFRs), AGN luminosities, and host galaxy stellar masses. The set of templates is relatively simple: a standard Type-1 quasar template; another for the photospheric output of the stellar population; and a far infrared star-forming template. For the Type-2 AGN SEDs, we substitute templates including internal obscuration, and some Type-1 objects require a warm component (T > 50 K). The individually Herschel- detected Type-1 AGNs and a subset of 17 Type-2 ones typically have luminosities > 10^{45} ergs/s, and supermassive black holes of ~ 3 X 10^8 Msun emitting at ~ 10% of the Eddington rate. We find them in about twice the numbers of AGN identified in SDSS data in the same fields, i.e., they represent typical high luminosity AGN, not an infrared-selected minority. These AGNs and their host galaxies are studied further in an accompanying paper

    Radiation-induced magnetoresistance oscillations in two-dimensional electron systems under bichromatic irradiation

    Full text link
    We analyze the magnetoresistance RxxR_{xx} oscillations in high-mobility two-dimensional electron systems induced by the combined driving of two radiation fields of frequency ω1\omega_1 and ω2\omega_2, based on the balance-equation approach to magnetotransport for high-carrier-density systems in Faraday geometry. It is shown that under bichromatic irradiation of ω21.5ω1\omega_2\sim 1.5 \omega_1, most of the characterstic peak-valley pairs in the curve of RxxR_{xx} versus magnetic field in the case of monochromatic irradiation of either ω1\omega_1 or ω2\omega_2 disappear, except the one around ω1/ωc2\omega_1/\omega_c\sim 2 or ω2/ωc3\omega_2/\omega_c\sim 3. RxxR_{xx} oscillations show up mainly as new peak-valley structures around other positions related to multiple photon processes of mixing frequencies ω1+ω2\omega_1+\omega_2, ω2ω1\omega_2-\omega_1, etc. Many minima of these resistance peak-valley pairs can descend down to negative with enhancing radiation strength, indicating the possible bichromaticzero-resistance states.Comment: 5 pages, 3 figures. Accepted for publication in Phys. Rev.

    Average Density of States in Disordered Graphene systems

    Full text link
    In this paper, the average density of states (ADOS) with a binary alloy disorder in disordered graphene systems are calculated based on the recursion method. We observe an obvious resonant peak caused by interactions with surrounding impurities and an anti-resonance dip in ADOS curves near the Dirac point. We also find that the resonance energy (Er) and the dip position are sensitive to the concentration of disorders (x) and their on-site potentials (v). An linear relation, not only holds when the impurity concentration is low but this relation can be further extended to high impurity concentration regime with certain constraints. We also calculate the ADOS with a finite density of vacancies and compare our results with the previous theoretical results.Comment: 10 pages, 8 figure

    Quantum transport of two-dimensional Dirac fermions in SrMnBi2

    Full text link
    We report two-dimensional quantum transport in SrMnBi2_2 single crystals. The linear energy dispersion leads to the unusual nonsaturated linear magnetoresistance since all Dirac fermions occupy the lowest Landau level in the quantum limit. The transverse magnetoresistance exhibits a crossover at a critical field BB^* from semiclassical weak-field B2B^2 dependence to the high-field linear-field dependence. With increase in the temperature, the critical field BB^* increases and the temperature dependence of BB^* satisfies quadratic behavior which is attributed to the Landau level splitting of the linear energy dispersion. The effective magnetoresistant mobility μMR3400\mu_{MR}\sim 3400 cm2^2/Vs is derived. Angular dependent magnetoresistance and quantum oscillations suggest dominant two-dimensional (2D) Fermi surfaces. Our results illustrate the dominant 2D Dirac fermion states in SrMnBi2_2 and imply that bulk crystals with Bi square nets can be used to study low dimensional electronic transport commonly found in 2D materials like graphene.Comment: 5 papges, 4 figure

    Effect of the Kondo correlation on thermopower in a Quantum Dot

    Full text link
    In this paper we study the thermopower of a quantum dot connected to two leads in the presence of Kondo correlation by employing a modified second-order perturbation scheme at nonequilibrium. A simple scheme, Ng's ansatz [Phys. Rev. Lett. {\bf 76}, 487 (1996)], is adopted to calculate nonequilibrium distribution Green's function and its validity is further checked with regard to the Onsager relation. Numerical results demonstrate that the sign of the thermopower can be changed by tuning the energy level of the quantum dot, leading to a oscillatory behavior with a suppressed magnitude due to the Kondo effect. We also calculate the thermal conductance of the system, and find that the Wiedemann-Franz law is obeyed at low temperature but violated with increasing temperature, corresponding to emerging and quenching of the Kondo effect.Comment: 6 pages, 4 figures; accepted for publication in J Phys.: Condensed Matte

    Elastic energy of proteins and the stages of protein folding

    Full text link
    We propose a universal elastic energy for proteins, which depends only on the radius of gyration RgR_{g} and the residue number NN. It is constructed using physical arguments based on the hydrophobic effect and hydrogen bonding. Adjustable parameters are fitted to data from the computer simulation of the folding of a set of proteins using the CSAW (conditioned self-avoiding walk) model. The elastic energy gives rise to scaling relations of the form RgNνR_{g}\sim N^{\nu} in different regions. It shows three folding stages characterized by the progression with exponents ν=3/5,3/7,2/5\nu = 3/5, 3/7, 2/5, which we identify as the unfolded stage, pre-globule, and molten globule, respectively. The pre-globule goes over to the molten globule via a break in behavior akin to a first-order phase transition, which is initiated by a sudden acceleration of hydrogen bonding

    Effects of R-parity violating supersymmetry in top pair production at linear colliders with polarized beams

    Full text link
    In the minimal supersymmetric standard model with R-parity violation, the lepton number violating top quark interactions can contribute to the top pair production at a linear collider via tree-level u-channel squark exchange diagrams. We calculate such contributions and find that in the allowed range of these R-violating couplings, the top pair production rate as well as the top quark polarization and the forward-backward asymmetry can be significantly altered. By comparing the unpolarized beams with the polarized beams, we find that the polarized beams are more powerful in probing such new physics.Comment: 10 pages, 6 fig
    corecore