4,570 research outputs found

    Interaction induced topological phase transition in Bernevig-Hughes-Zhang model

    Full text link
    We study interaction induced topological phase transition in Bernevig-Hughes-Zhang model. Topological nature of the phase transition is revealed by directly calculating the Z2 index of the interacting system from the single-particle Green's function. The interacting Z2 index is also consistently checked through the edge spectra. Combined with ab initio methods, present approach is a useful tool searching for correlated topological insulating materials from the first-principle point of view.Comment: 4.5 pages, 4 figures, reference adde

    Pole expansion of self-energy and interaction effect on topological insulators

    Full text link
    We study effect of interactions on time-reversal-invariant topological insulators. Their topological indices are expressed by interacting Green's functions. Under the local self-energy approximation, we connect topological index and surface states of an interacting system to an auxiliary noninteracting system, whose Hamiltonian is related to the pole-expansions of the local self-energy. This finding greatly simplifies the calculation of interacting topological indices and gives an noninteracting pictorial description of interaction driven topological phase transitions. Our results also bridge studies of the correlated topological insulating materials with the practical dynamical-mean-field-theory calculations.Comment: 4.2 pages, 3 figures, reference added, typos correcte
    • …
    corecore