23 research outputs found

    Katanin-Dependent Microtubule Ordering in Association with ABA Is Important for Root Hydrotropism

    Get PDF
    Root hydrotropism refers to root directional growth toward soil moisture. Cortical microtubule arrays are essential for determining the growth axis of the elongating cells in plants. However, the role of microtubule reorganization in root hydrotropism remains elusive. Here, we demonstrate that the well-ordered microtubule arrays and the microtubule-severing protein KATANIN (KTN) play important roles in regulating root hydrotropism in Arabidopsis. We found that the root hydrotropic bending of the ktn1 mutant was severely attenuated but not root gravitropism. After hydrostimulation, cortical microtubule arrays in cells of the elongation zone of wild-type (WT) Col-0 roots were reoriented from transverse into an oblique array along the axis of cell elongation, whereas the microtubule arrays in the ktn1 mutant remained in disorder. Moreover, we revealed that abscisic acid (ABA) signaling enhanced the root hydrotropism of WT and partially rescued the oryzalin (a microtubule destabilizer) alterative root hydrotropism of WT but not ktn1 mutants. These results suggest that katanin-dependent microtubule ordering is required for root hydrotropism, which might work downstream of ABA signaling pathways for plant roots to search for water

    Low-mass dark matter search results from full exposure of PandaX-I experiment

    Full text link
    We report the results of a weakly-interacting massive particle (WIMP) dark matter search using the full 80.1\;live-day exposure of the first stage of the PandaX experiment (PandaX-I) located in the China Jin-Ping Underground Laboratory. The PandaX-I detector has been optimized for detecting low-mass WIMPs, achieving a photon detection efficiency of 9.6\%. With a fiducial liquid xenon target mass of 54.0\,kg, no significant excess event were found above the expected background. A profile likelihood analysis confirms our earlier finding that the PandaX-I data disfavor all positive low-mass WIMP signals reported in the literature under standard assumptions. A stringent bound on the low mass WIMP is set at WIMP mass below 10\,GeV/c2^2, demonstrating that liquid xenon detectors can be competitive for low-mass WIMP searches.Comment: v3 as accepted by PRD. Minor update in the text in response to referee comments. Separating Fig. 11(a) and (b) into Fig. 11 and Fig. 12. Legend tweak in Fig. 9(b) and 9(c) as suggested by referee, as well as a missing legend for CRESST-II legend in Fig. 12 (now Fig. 13). Same version as submitted to PR

    Heating efficiency of commercial magnetic nanoparticles commonly used in MPI

    No full text
    Magnetic particle imaging?MPI?uses magnetic nanoparticles(MNPs) to generate signals, and there are already several commercial MNPs available for MPI. MPI guided magnetic hyperthermia (MH) has a huge application prospect in the precision treatment of tumor. It is of great significance for MPI-guided MH to find a kind of MNPs suitable for both MPI and MH. In this work, we first tested the heating efficiency of five kinds of commercial MNPs(Micromod for Perimag,Synomag-70,Synomag-50;Magnetic Insight for Vivotrax;Nanoeast for Mag3300)commonly used in MPI at 163kHz?8mT.Of these MNPs, Mag3300 has the best heating efficiency under fixed conditions. The further test showed that Mag3300 can be heated up to at least 41.2 ? . This shows the potential of Mag3300 for MPI-guided MH under this conditions
    corecore