57 research outputs found

    Road Traffic Safety Risk Estimation Method Based on Vehicle Onboard Diagnostic Data

    Get PDF
    Currently, research on road traffic safety is mostly focused on traffic safety evaluations based on statistical indices for accidents. There is still a need for in-depth investigation on preaccident identification of safety risks. In this study, the correlations between high-incidence locations for aberrant driving behaviors and locations of road traffic accidents are analyzed based on vehicle OBD data. A road traffic safety risk estimation index system with road traffic safety entropy (RTSE) as the primary index and rapid acceleration frequency, rapid deceleration frequency, rapid turning frequency, speeding frequency, and high-speed neutral coasting frequency as secondary indices is established. A calculation method of RTSE is proposed based on an improved entropy weight method. This method involves three aspects, namely, optimization of the base of the logarithm, processing of zero-value secondary indices, and piecewise calculation of the weight of each index. Additionally, a safety risk level determination method based on two-step clustering (density and "jats:italic"k"/jats:italic"-means clustering) is also proposed, which prevents isolated data points from affecting safety risk classification. A risk classification threshold calculation method is formulated based on "jats:italic"k"/jats:italic"-mean clustering. The results show that high-incidence locations for aberrant driving behaviors are consistent with the locations of traffic accidents. The proposed methods are validated through a case study on four roads in Chongqing with a total length of approximately 38 km. The results show that the road traffic safety trends characterized by road safety entropy and traffic accidents are consistent. Document type: Articl

    Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics

    Get PDF
    IR64, the most widely grown indica rice in South and Southeast Asia, possesses many positive agronomic characteristics (e.g., wide adaptability, high yield potential, tolerance to multiple diseases and pests, and good eating quality,) that make it an ideal genotype for identifying mutational changes in traits of agronomic importance. We have produced a large collection of chemical and irradiation-induced IR64 mutants with different genetic lesions that are amenable to both forward and reverse genetics. About 60,000 IR64 mutants have been generated by mutagenesis using chemicals (diepoxybutane and ethylmethanesulfonate) and irradiation (fast neutron and gamma ray). More than 38,000 independent lines have been advanced to M4 generation enabling evaluation of quantitative traits by replicated trials. Morphological variations at vegetative and reproductive stages, including plant architecture, growth habit, pigmentation and various physiological characters, are commonly observed in the four mutagenized populations. Conditional mutants such as gain or loss of resistance to blast, bacterial blight, and tungro disease have been identified at frequencies ranging from 0.01% to 0.1%. Results from pilot experiments indicate that the mutant collections are suitable for reverse genetics through PCR-detection of deletions and TILLING. Furthermore, deletions can be detected using oligomer chips suggesting a general technique to pinpoint deletions when genome-wide oligomer chips are broadly available. M4 mutant seeds are available for users for screening of altered response to multiple stresses. So far, more than 15,000 mutant lines have been distributed. To facilitate broad usage of the mutants, a mutant database has been constructed in the International Rice Information System (IRIS; http: //www.iris.irri.org) to document the phenotypes and gene function discovered by users

    Comparative Analysis of the Complete Mitochondrial Genomes for Development Application

    Get PDF
    This present research work reports the comparative analysis of the entire nucleotide sequence of mitochondrial genomes of Serranochromis robustus and Buccochromis nototaenia and phylogenetic analyses of their protein-coding genes in order to establish their phylogenetic relationship within Cichlids. The mitochondrial genomes of S. robustus and B. nototaenia are 16,583 and 16,580 base pairs long, respectively, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, 22 transfer RNA genes, and one control region (D-loop) which is 888 and 887 base pairs long, respectively, showing the same gene order and identical number of gene or regions with other well-elucidated mitogenomes of Cichlids. However, with exception of cytochrome-c oxidase subunit-1 (COX-1) gene, all the identified PCGs were initiated by ATG-codons. Structurally, 11 tRNA genes in B. nototaenia species and 9 tRNA genes in S. robustus species, folded into typical clover-leaf secondary structure created by the regions of self-complementarity within tRNA. All the 22 tRNA genes in both species lack variable loop. Moreover, 28 genes which include 12-protein-coding genes are encoded on the H-strand and the remaining 9 genes including one protein-coding gene are encoded on the L-strand. Thirteen sequences of concatenated mitochondrial protein-coding genes were aligned using MUSCLE, and the phylogenetic analyses performed using maximum likelihood and Bayesian inference showed that S. robustus and B. nototaenia had a broad phylogenetic relationship. These results may be a useful tool in resolving higher-level relationships in organisms and a useful dataset for studying the evolution of the Cichlidae mitochondrial genome, since Cichlids are well-known model species in the study of evolutionary biology, because of their extreme morphological, biogeographical, parental care behavior for eggs and larvae and phylogenetic diversities

    A high voltage diode with partial n<sup>+</sup> adjusting region embedded at the anode side

    No full text

    Road Traffic Safety Risk Estimation Method Based on Vehicle Onboard Diagnostic Data

    No full text
    Currently, research on road traffic safety is mostly focused on traffic safety evaluations based on statistical indices for accidents. There is still a need for in-depth investigation on preaccident identification of safety risks. In this study, the correlations between high-incidence locations for aberrant driving behaviors and locations of road traffic accidents are analyzed based on vehicle OBD data. A road traffic safety risk estimation index system with road traffic safety entropy (RTSE) as the primary index and rapid acceleration frequency, rapid deceleration frequency, rapid turning frequency, speeding frequency, and high-speed neutral coasting frequency as secondary indices is established. A calculation method of RTSE is proposed based on an improved entropy weight method. This method involves three aspects, namely, optimization of the base of the logarithm, processing of zero-value secondary indices, and piecewise calculation of the weight of each index. Additionally, a safety risk level determination method based on two-step clustering (density and k-means clustering) is also proposed, which prevents isolated data points from affecting safety risk classification. A risk classification threshold calculation method is formulated based on k-mean clustering. The results show that high-incidence locations for aberrant driving behaviors are consistent with the locations of traffic accidents. The proposed methods are validated through a case study on four roads in Chongqing with a total length of approximately 38 km. The results show that the road traffic safety trends characterized by road safety entropy and traffic accidents are consistent

    Using Network Pharmacology and Animal Experiment to Investigate the Therapeutic Mechanisms of Polydatin against Vincristine-Induced Neuropathic Pain

    No full text
    Background. Polydatin (PD) is the primary active compound in Polygonum cuspidatum Sieb and has been demonstrated to exert anti-inflammatory and neuroprotective activities. In the present study, we aimed to explore the therapeutic mechanisms of PD against chemotherapy-induced neuropathic pain. Methods. The putative targets of PD were obtained from the CTD and SwissTargetPrediction databases. Neuropathic pain- and VIN-related targets were collected from the CTD and GeneCards databases. Subsequently, the intersection targets were obtained using the Venn tool, and the protein-protein interaction (PPI) was constructed by the STRING database. GO and KEGG enrichment analyses were performed to investigate the biological functions of the intersection targets. Further, a rat model of VIN-induced neuropathic pain was established to confirm the reliability of the network pharmacology findings. Results. A total of 46 intersection targets were identified as potential therapeutic targets, mainly related to neuroinflammation. KEGG pathway analysis indicated that the IL-17 signaling pathway was involved in the mechanism of the antinociceptive effect of PD. PPI network analysis indicated that RELA, IL-6, TP53, MAPK3, and MAPK1 were located at crucial nodes in the network. Additionally, PD exerted an antinociceptive effect by increasing the nociceptive threshold. The results of qRT-PCR, western blot, and immunohisochemistry indicated that PD inhibited the IL-6, TP53, and MAPK1 levels in VIN-induced neuropathic pain rats. Conclusions. Overall, this research provided evidence that suppressing inflammatory signaling pathways might be a potential mechanism action of PD’s antinociceptive effect against VIN-induced neuropathic pain

    OsBSK3 Positively Regulates Grain Length and Weight by Inhibiting the Phosphatase Activity of OsPPKL1

    No full text
    Brassinosteroids (BRs) are a crucial class of plant hormones that regulate many important agronomic traits in rice (Oryza sativa L.); thus, the BR signaling pathway is a very important tool for breeders to improve the grain yield and quantity of rice. Contrary to the well-established BR signaling pathway in Arabidopsis, there are significant gaps in the rice BR signaling pathway, especially the regulation mechanism from OsBSK3 to OsPPKLs and OsGSKs. In this study, we report how OsBSK3 knockout mutants confer shorter and lighter grains and exhibit a typical BR-insensitive phenotype, suggesting OsBSK3 plays a positive role in BR signaling without genetic redundancy with homologs. Furthermore, OsBSK3 could physically interact with OsPPKL1 and OsGSK3, the downstream components in BR signaling, as a scaffold protein, and inhibit the phosphatase activity of OsPPKL1 on the dephosphorylation of OsGSK3. In addition, the genetic evidence showed OsBSK3 acts upstream of OsPPKL1 in regulating grain length and weight. Our results clarify the role of OsBSK3 and provide new insights into BR-signaling mechanisms, leading to potential new targets for the genetic improvement of rice
    • …
    corecore