4,283 research outputs found
Fast Convergence and Reduced Complexity Receiver Design for LDS-OFDM System
Low density signature for OFDM (LDS-OFDM) is able to achieve satisfactory performance in overloaded conditions, but the existing LDS-OFDM has the drawback of slow convergence rate for multiuser detection (MUD) and high receiver complexity. To tackle these problems, we propose a serial schedule for the iterative MUD. By doing so, the convergence rate of MUD is accelerated and the detection iterations can be decreased. Furthermore, in order to exploit the similar sparse structure of LDS-OFDM and LDPC code, we utilize LDPC codes for LDS-OFDM system. Simulations show that compared with existing LDS-OFDM, the LDPC code improves the system performance
Sub-graph based joint sparse graph for sparse code multiple access systems
Sparse code multiple access (SCMA) is a promising air interface candidate technique for next generation mobile networks, especially for massive machine type communications (mMTC). In this paper, we design a LDPC coded SCMA detector by combining the sparse graphs of LDPC and SCMA into one joint sparse graph (JSG). In our proposed scheme, SCMA sparse graph (SSG) defined by small size indicator matrix is utilized to construct the JSG, which is termed as sub-graph based joint sparse graph of SCMA (SG-JSG-SCMA). In this paper, we first study the binary-LDPC (B-LDPC) coded SGJSG- SCMA system. To combine the SCMA variable node (SVN) and LDPC variable node (LVN) into one joint variable node (JVN), a non-binary LDPC (NB-LDPC) coded SG-JSG-SCMA is also proposed. Furthermore, to reduce the complexity of NBLDPC coded SG-JSG-SCMA, a joint trellis representation (JTR) is introduced to represent the search space of NB-LDPC coded SG-JSG-SCMA. Based on JTR, a low complexity joint trellis based detection and decoding (JTDD) algorithm is proposed to reduce the computational complexity of NB-LDPC coded SGJSG- SCMA system. According to the simulation results, SG-JSGSCMA brings significant performance improvement compare to the conventional receiver using the disjoint approach, and it can also outperform a Turbo-structured receiver with comparable complexity. Moreover, the joint approach also has advantages in terms of processing latency compare to the Turbo approaches
Single-Shot Refinement Neural Network for Object Detection
For object detection, the two-stage approach (e.g., Faster R-CNN) has been
achieving the highest accuracy, whereas the one-stage approach (e.g., SSD) has
the advantage of high efficiency. To inherit the merits of both while
overcoming their disadvantages, in this paper, we propose a novel single-shot
based detector, called RefineDet, that achieves better accuracy than two-stage
methods and maintains comparable efficiency of one-stage methods. RefineDet
consists of two inter-connected modules, namely, the anchor refinement module
and the object detection module. Specifically, the former aims to (1) filter
out negative anchors to reduce search space for the classifier, and (2)
coarsely adjust the locations and sizes of anchors to provide better
initialization for the subsequent regressor. The latter module takes the
refined anchors as the input from the former to further improve the regression
and predict multi-class label. Meanwhile, we design a transfer connection block
to transfer the features in the anchor refinement module to predict locations,
sizes and class labels of objects in the object detection module. The
multi-task loss function enables us to train the whole network in an end-to-end
way. Extensive experiments on PASCAL VOC 2007, PASCAL VOC 2012, and MS COCO
demonstrate that RefineDet achieves state-of-the-art detection accuracy with
high efficiency. Code is available at https://github.com/sfzhang15/RefineDetComment: 14 pages, 7 figures, 7 table
Coherence assisted resonance with sub-lifetime-limited linewidth
We demonstrate a novel approach to obtain resonance linewidth below that
limited by coherence lifetime. Cross correlation between induced intensity
modulation of two lasers coupling the target resonance exhibits a narrow
spectrum. 1/30 of the lifetime-limited width was achieved in a
proof-of-principle experiment where two ground states are the target resonance
levels. Attainable linewidth is only limited by laser shot noise in principle.
Experimental results agree with an intuitive analytical model and numerical
calculations qualitatively. This technique can be easily implemented and should
be applicable to many atomic, molecular and solid state spin systems for
spectroscopy, metrology and resonance based sensing and imaging.Comment: 5 pages 5 figure
- …