68 research outputs found
A Comparative Study of Move Analysis in Chinese and International Research Article Abstracts
To raise the authorsâ awareness of using the moves and move models in abstract writing, this study compares the frequency, type, and significant difference of moves and move models in 100 abstracts written in English by Chinese scholars and 100 abstracts written by international scholars in 10 prestigious international journals in the field of linguistics. The adapted Hylandâs five-move model was used as research framework, Corpus and statistic software SPSS were used as research instruments. The comparisons report that Chinese scholars tend to use introduction, result, and conclusion moves. International scholars are inclined to use purpose, method, result, and conclusion moves. The results also indicate that the four-move model is the most prevalent in the two groups. Chinese scholars used the two-move model more than the English authors whereas used the five-move model less than the international authors. The findings are intended to provide referential value for the writing and teaching of English for academic purposes
Solidification of High Organic Matter Content Sludge by Cement, Lime and Metakaolin
Based on orthogonal experimental design, the key solidification controlling technology of Solidified/Stabilized (S/S) sludge with high total organic content (TOC) by cement, lime and metakaolin was explored by macroscopic tests, chemical components measurements and microscopic analysis. The macroscopic tests show that, the permeability coefficient is mainly affected by initial water content and lime content, and the unconfined compression strength is mainly affected by cement content and lime content. The chemical components measurements show that, the solidification effect of S/S sludge with high TOC is controlled by organic matter consumption, and organic matter consumption is determined by the alkaline environment from the cement and lime hydration reactions, which is mainly affect by the initial water content and lime-metakaolin content ratio. The microscopic analysis results show that, lime consumes parts of organic matter while excess lime produces weak Ca(OH)2 crystal fluffy sheet structure, matakaolin produces pozzolanic reactions with cement and lime instead of soil particles, and consumes the weak Ca(OH)2 crystal fluffy sheet structure produced by superfluous lime. The research has confirmed key controlling points of S/S sludge in case of high TOC, which will provide theoretical guidance and technical support for S/S sludge promotion with high TOC
Constitutive equation for the hot deformation behavior of Csf/AZ91D composites and its validity for numerical simulation
The flow stress behavior of 10 vol. % short carbon fibers reinforced AZ91D composites (C-sf/AZ91D) were investigated by hot compression test. The results show the flow stress reach the peak value at small strain and then decrease monotonically until the end of the large strain, which exhibits an obvious dynamic strain softening. The decrease of stress level with deformation temperature increasing or strain rate decreasing can be represented by Zener-Hollomon parameter in a hyperbolic sine equation. By considering the effect of strain on material constants, a modified viscoplastic constitutive equation was established to characterize the dependence of flow stress on the deformation temperature, strain, and strain rate. The stress-strain values calculated by the constitutive equation are in consistent with the experimental results. Applying the constitutive equation, the plastic deformation of C-sf/AZ91D) composites during the hot compression process were analyzed by finite element simulation. The calculated punch force-stroke curves agree well with the measured ones. The results confirmed that the established constitutive equation can accurately describe the hot plastic deformation behavior of C-sf/AZ91D composites, and can be used for the finite element analysis on the hot forming process. (C) 2016 Elsevier Ltd. All rights reserved
Study on the Creep Characteristics of Sandstone under Coupled Stress-water Pressure
Long-term interaction between stress and water pressure leads to creep damage of reservoir bank slope. As a result there will be instability of the bank slopes in many water conservancy projects. The rock mass creeping effect of coupled stress-water pressure was studied by using a typical sandstone rock from the Three Gorges reservoir area. The experiment was conducted by using the rock immersion-air-drying cyclic load rheometer device (designed and manufactured by our research team). Based on the experimental results, the following key points were observed: 1) the creep strain and the steady-state creep rate was increasing when the water pressure increased (at the same stress level). Under the same water pressure, the increase in the axial pressure resulted in the increase in the creep strain and steady creep rate of the sandstone specimens. 2) the increase in the axial pressure increased the creep strain and steady-state creep rate of the sandstone specimens while the water pressure increased. The mechanical properties of the sandstone specimens were affected by the water pressure. 3) the water infiltrates through the pore surfaces. As a result, the rate of deformation will increase while the bearing capacity and long-term strength of the rock decrease. This paper provides a solid theoretical foundation for the evaluation and prediction of reservoir geological hazards
Near-net forming complex shaped Zr-based bulk metallic glasses by high pressure die casting
Forming complex geometries using the casting process is a big challenge for bulk metallic glasses (BMGs), because of a lack of time of the window for shaping under the required high cooling rate. In this work, we open an approach named the âentire process vacuum high pressure die castingâ (EPV-HPDC), which delivers the ability to fill die with molten metal in milliseconds, and create solidification under high pressure. Based on this process, various Zr-based BMGs were prepared by using industrial grade raw material. The results indicate that the EPV-HPDC process is feasible to produce a glassy structure for most Zr-based BMGs, with a size of 3 mm Ă 10 mm and with a high strength. In addition, it has been found that EPV-HPDC process allows complex industrial BMG parts, some of which are hard to be formed by any other metal processes, to be net shaped precisely. The BMG components prepared by the EVP-HPDC process possess the advantages of dimensional accuracy, efficiency, and cost compared with the ones formed by other methods. The EVP-HPDC process paves the way for the large-scale application of BMGs
Central and Peripheral Changes in FOS Expression in Schizophrenia Based on Genome-Wide Gene Expression
Schizophrenia is a chronic, debilitating neuropsychiatric disorder. Multiple transcriptomic gene expression profiling analysis has been used to identify schizophrenia-associated genes, unravel disease-associated biomarkers, and predict clinical outcomes. We aimed to identify gene expression regulation, underlying pathways, and their roles in schizophrenia pathogenesis. We searched the Gene Expression Omnibus (GEO) database for microarray studies of fibroblasts, lymphoblasts, and post-mortem brains of schizophrenia patients. Our analysis demonstrated high FOS expression in non-neural peripheral samples and low FOS expression in brain tissues of schizophrenia patients compared with healthy controls. FOS exhibited predictive value for schizophrenia patients in these datasets. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that âamphetamine addictionâ was among the top 10 significantly enriched KEGG pathways. FOS and FOSB, which are implicated in the amphetamine addiction pathway, were up-regulated in schizophrenia fibroblast samples. Proteinâprotein interaction (PPI) network analysis revealed that proteins closely interacting with FOS-encoded protein were also involved in the amphetamine addiction pathway. Pearson correlation test indicated that FOS showed positive correlation with genes in the amphetamine pathway. The results revealed that FOS was acceptable as a biomarker for schizophrenia and may be involved in schizophrenia pathogenesis
Recommended from our members
GWAS Identifies Novel Susceptibility Loci on 6p21.32 and 21q21.3 for Hepatocellular Carcinoma in Chronic Hepatitis B Virus Carriers
Genome-wide association studies (GWAS) have recently identified KIF1B as susceptibility locus for hepatitis B virus (HBV)ârelated hepatocellular carcinoma (HCC). To further identify novel susceptibility loci associated with HBVârelated HCC and replicate the previously reported association, we performed a large three-stage GWAS in the Han Chinese population. 523,663 autosomal SNPs in 1,538 HBVâpositive HCC patients and 1,465 chronic HBV carriers were genotyped for the discovery stage. Top candidate SNPs were genotyped in the initial validation samples of 2,112 HBVâpositive HCC cases and 2,208 HBV carriers and then in the second validation samples of 1,021 cases and 1,491 HBV carriers. We discovered two novel associations at rs9272105 (HLA-DQA1/DRB1) on 6p21.32 (OR = 1.30, P = 1.13Ă) and rs455804 (GRIK1) on 21q21.3 (OR = 0.84, P = 1.86Ă), which were further replicated in the fourth independent sample of 1,298 cases and 1,026 controls (rs9272105: OR = 1.25, P = 1.71Ă; rs455804: OR = 0.84, P = 6.92Ă). We also revealed the associations of HLA-DRB1*0405 and 0901*0602, which could partially account for the association at rs9272105. The association at rs455804 implicates GRIK1 as a novel susceptibility gene for HBVârelated HCC, suggesting the involvement of glutamate signaling in the development of HBVârelated HCC
Elastoplastic analyses of multiple cracks in thin sheets, and of elliptical cracks in 3D bodies
Ph.D.S. N. Atlur
- âŠ