2,718 research outputs found

    A Compact Starburst Core in the Dusty Lyman Break Galaxy Westphal-MD11

    Full text link
    Using the IRAM Plateau de Bure Interferometer, we have searched for CO(3-2) emission from the dusty Lyman break galaxy Westphal-MD11 at z = 2.98. Our sensitive upper limit is surprisingly low relative to the system's 850 um flux density and implies a far-IR/CO luminosity ratio as elevated as those seen in local ultraluminous mergers. We conclude that the observed dust emission must originate in a compact structure radiating near its blackbody limit and that a relatively modest molecular gas reservoir must be fuelling an intense nuclear starburst (and/or deeply buried active nucleus) that may have been triggered by a major merger. In this regard, Westphal-MD11 contrasts strikingly with the lensed Lyman break galaxy MS1512-cB58, which is being observed apparently midway through an extended episode of more quiescent disk star formation.Comment: 5 pages, 1 figure (emulateapj), accepted by ApJ

    Initialization by measurement of a two-qubit superconducting circuit

    Full text link
    We demonstrate initialization by joint measurement of two transmon qubits in 3D circuit quantum electrodynamics. Homodyne detection of cavity transmission is enhanced by Josephson parametric amplification to discriminate the two-qubit ground state from single-qubit excitations non-destructively and with 98.1% fidelity. Measurement and postselection of a steady-state mixture with 4.7% residual excitation per qubit achieve 98.8% fidelity to the ground state, thus outperforming passive initialization.Comment: 5 pages, 4 figures, and Supplementary Information (7 figures, 1 table

    Prospects for cooling nanomechanical motion by coupling to a superconducting microwave resonator

    Full text link
    Recent theoretical work has shown that radiation pressure effects can in principle cool a mechanical degree of freedom to its ground state. In this paper, we apply this theory to our realization of an opto-mechanical system in which the motion of mechanical oscillator modulates the resonance frequency of a superconducting microwave circuit. We present experimental data demonstrating the large mechanical quality factors possible with metallic, nanomechanical beams at 20 mK. Further measurements also show damping and cooling effects on the mechanical oscillator due to the microwave radiation field. These data motivate the prospects for employing this dynamical backaction technique to cool a mechanical mode entirely to its quantum ground state.Comment: 6 pages, 6 figure

    NICMOS Imaging of the Host Galaxies of z ~ 2 - 3 Radio-Quiet Quasars

    Get PDF
    We have made a deep NICMOS imaging study of a sample of 5 z ~ 2 - 3 radio-quiet quasars with low absolute nuclear luminosities, and we have detected apparent host galaxies in all of these. Most of the hosts have luminosities approximately equal to present-day L*, with a range from 0.2 L* to about 4 L*. These host galaxies have magnitudes and sizes consistent with those of the Lyman break galaxies at similar redshifts and at similar rest wavelengths, but are about two magnitudes fainter than high-z powerful radio galaxies. The hosts of our high-z sample are comparable to or less luminous than the hosts of the low-z RQQs with similar nuclear absolute magnitudes. However, the high z galaxies are more compact than the hosts of the low z quasars, and probably have only 10 - 20% of the stellar mass of their low-z counterparts. Application of the M(bulge)/M(BH) relation found for present-day spheroids to the stellar masses implied for the high z host galaxies would indicate that they contain black holes with masses around 10^8 Msolar. Comparison to their nuclear magnitudes implies accretion rates that are near or at the Eddington limit. Although these high z hosts already contain supermassive black holes, the galaxies will need to grow significantly to evolve into present-day L* galaxies. These results are basically consistent with theoretical predictions for the hierarchical buildup of the galaxy host and its relation to the central supermassive black hole.Comment: 25 pages, 13 figures, accepted for publication in Ap

    THz-range free-electron laser ESR spectroscopy: techniques and applications in high magnetic fields

    Full text link
    The successful use of picosecond-pulse free-electron-laser (FEL) radiation for the continuous-wave THz-range electron spin resonance (ESR) spectroscopy has been demonstrated. The combination of two linac-based FELs (covering the wavelength range of 4 - 250 μ\mum) with pulsed magnetic fields up to 70 T allows for multi-frequency ESR spectroscopy in a frequency range of 1.2 - 75 THz with a spectral resolution better than 1%. The performance of the spectrometer is illustrated with ESR spectra obtained in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the low-dimensional organic material (C6_6H9_9N2_2)CuCl3_3.Comment: 9 pages, 9 figures. Rev. Sci. Instrum., accepte

    Spitzer Quasar and ULIRG evolution study (QUEST): I. The origin of the far infrared continuum of QSOs

    Get PDF
    This paper addresses the origin of the far-infrared (FIR) continuum of QSOs, based on the Quasar and ULIRG Evolution Study (QUEST) of nearby QSOs and ULIRGs using observations with the Spitzer Space Telescope. For 27 Palomar-Green QSOs at z <~ 0.3, we derive luminosities of diagnostic lines ([NeII]12.8um, [NeV]14.3um, [OIV]25.9um) and emission features (PAH7.7um emission which is related to star formation), as well as continuum luminosities over a range of mid- to far-infrared wavelengths between 6 and 60um. We detect star-formation related PAH emission in 11/26 QSOs and fine-structure line emission in all of them, often in multiple lines. The detection of PAHs in the average spectrum of sources which lack individual PAH detections provides further evidence for the widespread presence of PAHs in QSOs. Similar PAH/FIR and [NeII]/FIR ratios are found in QSOs and in starburst-dominated ULIRGs and lower luminosity starbursts. We conclude that the typical QSO in our sample has at least 30% but likely most of the far-infrared luminosity (~ 10^(10...12)Lsun) arising from star formation, with a tendency for larger star formation contribution at the largest FIR luminosities. In the QSO sample, we find correlations between most of the quantities studied including combinations of AGN tracers and starburst tracers. The common scaling of AGN and starburst luminosities (and fluxes) is evidence for a starburst-AGN connection in luminous AGN. Strong correlations of far-infrared continuum and starburst related quantities (PAH, low excitation [NeII]) offer additional support for the starburst origin of far-infrared emission.Comment: 39 pages, 8 figures, accepted for publication in Ap
    corecore