242 research outputs found
Dense gas formation and destruction in a simulated Perseus-like galaxy cluster with spin-driven black hole feedback
Extended filamentary H emission nebulae are a striking feature of nearby galaxy clusters but the formation mechanism of the filaments, and the processes which shape their morphology remain unclear. We conduct an investigation into the formation, evolution and destruction of dense gas in the center of a simulated, Perseus-like, cluster under the influence of a spin-driven jet. We particularly study the role played by condensation of dense gas from the diffuse intracluster medium, and the impact of direct uplifting of existing dense gas by the jets, in determining the spatial distribution and kinematics of the dense gas. We present a hydrodynamical simulation of an idealised Perseus-like cluster using the adaptive mesh refinement code {\sc ramses}. Our simulation includes a supermassive black hole (SMBH) that self-consistently tracks its spin evolution via its local accretion, and in turn drives a large-scale jet whose direction is based on the black hole's spin evolution. We show that the formation and destruction of dense gas is closely linked to the SMBH's feedback cycle, and that its morphology is highly variable throughout the simulation. While extended filamentary structures readily condense from the hot intra-cluster medium, they are easily shattered into an overly clumpy distribution of gas during their interaction with the jet driven outflows. Condensation occurs predominantly onto infalling gas located 5 - 15 kpc from the center during quiescent phases of the central AGN, when the local ratio of the cooling time to free fall time falls below 20, i.e. when . We find evidence for both condensation and uplifting of dense gas, but caution that purely hydrodynamical simulations struggle to effectively regulate the cluster cooling cycle and produce overly clumpy distributions of dense gas morphologies, compared to observation
State Transfer Between a Mechanical Oscillator and Microwave Fields in the Quantum Regime
Recently, macroscopic mechanical oscillators have been coaxed into a regime
of quantum behavior, by direct refrigeration [1] or a combination of
refrigeration and laser-like cooling [2, 3]. This exciting result has
encouraged notions that mechanical oscillators may perform useful functions in
the processing of quantum information with superconducting circuits [1, 4-7],
either by serving as a quantum memory for the ephemeral state of a microwave
field or by providing a quantum interface between otherwise incompatible
systems [8, 9]. As yet, the transfer of an itinerant state or propagating mode
of a microwave field to and from a mechanical oscillator has not been
demonstrated owing to the inability to agilely turn on and off the interaction
between microwave electricity and mechanical motion. Here we demonstrate that
the state of an itinerant microwave field can be coherently transferred into,
stored in, and retrieved from a mechanical oscillator with amplitudes at the
single quanta level. Crucially, the time to capture and to retrieve the
microwave state is shorter than the quantum state lifetime of the mechanical
oscillator. In this quantum regime, the mechanical oscillator can both store
and transduce quantum information
High star formation rates as the origin of turbulence in early and modern disk galaxies
High spatial and spectral resolution observations of star formation and
kinematics in early galaxies have shown that two-thirds are massive rotating
disk galaxies with the remainder being less massive non-rotating objects. The
line of sight averaged velocity dispersions are typically five times higher
than in today's disk galaxies. This has suggested that
gravitationally-unstable, gas-rich disks in the early Universe are fuelled by
cold, dense accreting gas flowing along cosmic filaments and penetrating hot
galactic gas halos. However these accreting flows have not been observed, and
cosmic accretion cannot power the observed level of turbulence. Here we report
on a new sample of rare high-velocity-dispersion disk galaxies we have
discovered in the nearby Universe where cold accretion is unlikely to drive
their high star-formation rates. We find that the velocity dispersion is most
fundamentally correlated with their star-formation rates, and not their mass
nor gas fraction, which leads to a new picture where star formation itself is
the energetic driver of galaxy disk turbulence at all cosmic epochs.Comment: 9 pages, 2 figures, Supplimentary Info available at:
http://pulsar.swin.edu.au/~agreen/nature/sigma_mean_arXiv.pdf. Accepted for
publication in Natur
"Brace technology" thematic series - the Gensingen braceâą in the treatment of scoliosis
<p>Abstract</p> <p>Background</p> <p>Bracing concepts in use today for the treatment of scoliosis include symmetric and asymmetric hard braces usually made of polyethylene (PE) and soft braces. A new asymmetric ChĂȘneau style CAD/CAM derivate has been designed to overcome problems the author experienced with other ChĂȘneau CAD/CAM systems over the recent years.</p> <p>Brace description</p> <p>This CAD/CAM ChĂȘneau derivate has been called Gensingen braceâą, a brace available to address all possible curve patterns. Once the patients' trunk is scanned with the help of a whole trunk optical 3D-scan and the patients' data from the clinical measurements are recorded, a model of the brace can be created by (1) modifying the trunk model of the patient 'on screen' to achieve a very individual brace model using the CAD/CAM tools provided or by (2) choosing a brace model from our library and re-size it to the patients' properties 'on screen'.</p> <p>Results</p> <p>End-result studies have been published on the ChĂȘneau brace as early as 1985. Cohort studies on the ChĂȘneau brace are available as is a prospective controlled study respecting the SRS criteria for bracing studies, demonstrating beneficial outcomes, when compared to the controls using a soft brace. Sufficient in-brace correction effects have been demonstrated to be achievable when the ChĂȘneau principles of correction are used appropriately. As there is a positive correlation between in-brace correction and the final outcome, the ChĂȘneau concept of bracing with sufficient in-brace corrections as published can be regarded as being efficient when applied well. Case reports with high in-brace corrections, as shown within this paper using the Gensingen braceâą promise beneficial outcomes when a good compliance can be achieved.</p> <p>Conclusions</p> <p>The use of the Gensingen braceâą leads to sufficient in-brace corrections, when compared to the correction effects achieved with other braces, as described in literature.</p> <p>According to the patients' reports, the Gensingen braceâą is comfortable to wear, when adjusted properly.</p> <p>Further studies are necessary (1) in order to evaluate brace comfort and (2) effectiveness using the SRS inclusion criteria.</p
On the magnetic fields generated by experimental dynamos
We review the results obtained by three successful fluid dynamo experiments
and discuss what has been learnt from them about the effect of turbulence on
the dynamo threshold and saturation. We then discuss several questions that are
still open and propose experiments that could be performed to answer some of
them.Comment: 40 pages, 13 figure
Nanomechanical motion measured with precision beyond the standard quantum limit
Nanomechanical oscillators are at the heart of ultrasensitive detectors of
force, mass and motion. As these detectors progress to even better sensitivity,
they will encounter measurement limits imposed by the laws of quantum
mechanics. For example, if the imprecision of a measurement of an oscillator's
position is pushed below the standard quantum limit (SQL), quantum mechanics
demands that the motion of the oscillator be perturbed by an amount larger than
the SQL. Minimizing this quantum backaction noise and nonfundamental, or
technical, noise requires an information efficient measurement. Here we
integrate a microwave cavity optomechanical system and a nearly noiseless
amplifier into an interferometer to achieve an imprecision below the SQL. As
the microwave interferometer is naturally operated at cryogenic temperatures,
the thermal motion of the oscillator is minimized, yielding an excellent force
detector with a sensitivity of 0.51 aN/rt(Hz). In addition, the demonstrated
efficient measurement is a critical step towards entangling mechanical
oscillators with other quantum systems.Comment: 5 pages, 4 figure
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
A Project Portfolio Management Approach to Tacklingthe Exploration/Exploitation Trade-off
Organizational ambidexterity (OA) is an essen-tial capability for surviving in dynamic business environ-ments that advocates the simultaneous engagement inexploration and exploitation. Over the last decades,knowledge on OA has substantially matured, coveringinsights into antecedents, outcomes, and moderators of OA.However, there is little prescriptive knowledge that offersguidance on how to put OA into practice and to tackle thetrade-off between exploration and exploitation. To addressthis gap, the authors adopt the design science researchparadigm and propose an economic decision model asartifact. The decision model assists organizations inselecting and scheduling exploration and exploitation pro-jects to become ambidextrous in an economically reason-able manner. As for justificatory knowledge, the decisionmodel draws from prescriptive knowledge on projectportfolio management and value-based management, andfrom descriptive knowledge related to OA to structure thefield of action. To evaluate the decision model, its designspecification is discussed against theory-backed designobjectives and with industry experts. The paper alsoinstantiates the decision model as a software prototype andapplies the prototype to a case based on real-world data
- âŠ