93 research outputs found

    Comparison of omeprazole, metronidazole and clarithromycin with omeprazole/amoxicillin dual-therapy for the cure of Helicobacter pylori infection

    Get PDF
    In this randomized, multicenter trial, we evaluated the effectiveness and side effect profile of a modified omeprazole-based triple therapy to cure Helicobacter pylori infection. The control group consisted of patients treated with standard dual therapy comprising omeprazole and amoxicillin. One hundred and fifty-seven H. pylori infected patients with duodenal ulcers were randomly assigned to receive either a combination of omeprazole 10 mg, clarithromycin 250 mg and metronidazole 400 mg (OCM) given three times daily for 10 days (n = 81),or a combination of omeprazole 20 mg and amoxicillin 1 g (OA) given twice daily for 14 days (n = 76). Prior to treatment and after 2 and 6 weeks, gastric biopsies from the antrum and corpus were obtained for histology and H. pylori culture. H. pylori infection was cured in 97.4% after OCM and in 65.8% after OA in the per-protocol analysis (p < 0.001) (intention-to-treat analysis: 93.4% and 63.2%, respectively). H. pylori was successfully cultured in 122 patients (77%). The overall rate of metronidazole resistance was 19.7% (24/122), no primary resistance to clarithromycin or amoxicillin was found. In the OCM group, all patients infected with metronidazole-sensitive H. pylori strains (n = 51) and those infected with strains of unknown susceptibility to metronidazole (n = 14)were cured (100%), while 77% (10/13) of those harboring metronidazole-resistant. strains were cured of the infection (p = 0.36). Side effects leading to premature termination of treatment occurred in 2.5% of the patients in the OCM group and in 1.4 % of the OA group. We conclude that combined treatment with omeprazole, clarithromycin and a higher dose of metronidazole is highly effective in curing H, pylori infection, Helicobacter pylori omeprazole and that this regimen remains very effective in the presence of metronidazole resistant strains

    Synthetic Nanoparticles for Vaccines and Immunotherapy

    Get PDF
    The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004

    Anti-angiogenic properties of myo-inositol trispyrophosphate in ovo and growth reduction of implanted glioma

    Get PDF
    AbstractWe investigate here the anti-angiogenic properties of the synthetic compound myo-inositol trispyrophosphate (ITPP). By increasing oxy-haemoglobin dissociation, ITPP has the potential to counteract the effects of hypoxia, a critical regulator of angiogenesis and cancer progression. ITPP inhibited angiogenesis of the chorioallantoic membrane (CAM), as analyzed with an original program dedicated to automated quantification of angiogenesis in this model. ITPP also markedly reduced tumor progression and angiogenesis in an experimental model of U87 glioma cell nodules grafted onto the CAM. These results point out the potential of ITPP for the development of a new class of anti-angiogenic and anti-cancer compounds
    • …
    corecore