91 research outputs found

    Thermal breakage of window glass in room fires conditions - Analysis of some important parameters

    Get PDF
    In a compartment fire, the breakage and possible fallout of a window glass has a significant impact on the fire dynamics. The thermal breakage of glass depends on various parameters such as glass type, edge shading, edges conditions and constraints on the glass. The purpose of the present study is to investigate some of the key parameters affecting the thermal breakage of window glass in fire conditions using a recently developed and validated computer tool. Fallout is not within the scope of this study. Different boundary conditions of the glass pane (unconstrained and constrained) subjected to fire radiant heat are investigated. The analysis shows that to prevent glass thermal breakage, it is important to provide enough spacing between the frame and glass pane to accommodate the thermal expansion, and constraints on the glass structure should be avoided. The zones where the glass is likely to crack first are shown. The study also quantifies the effects of glass edge conditions on its thermal breakage in fire conditions; such analysis has not been reported in the literature due to its complexity and the statistical nature of edge flaws. The results show that an ordinary float glass mostly used in windows, with the “as-cut” edge condition would break later and is stronger than a ground edge or polished edge glass for the scenarios investigated. The study demonstrates how a predictive tool could be employed for a better understanding of thermal breakage of window glass in fires and for design guidance

    Slater-Pauling Behavior of the Half-Ferromagnetic Full-Heusler Alloys

    Full text link
    Using the full-potential screened Korringa-Kohn-Rostoker method we study the full-Heusler alloys based on Co, Fe, Rh and Ru. We show that many of these compounds show a half-metallic behavior, however in contrast to the half-Heusler alloys the energy gap in the minority band is extremely small. These full-Heusler compounds show a Slater-Pauling behavior and the total spin-magnetic moment per unit cell (M_t) scales with the total number of valence electrons (Z_t) following the rule: M_t=Z_t-24. We explain why the spin-down band contains exactly 12 electrons using arguments based on the group theory and show that this rule holds also for compounds with less than 24 valence electrons. Finally we discuss the deviations from this rule and the differences compared to the half-Heusler alloys.Comment: 10 pages, 8 figures, revised figure 3, new text adde

    Track D Social Science, Human Rights and Political Science

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138414/1/jia218442.pd

    Pattern of Substance Abuse in Psychiatric Inpatients

    No full text

    Psychiatric Networks in Canada

    No full text
    • …
    corecore