18 research outputs found

    Homocysteine as a predictive biomarker in early diagnosis of renal failure susceptibility and prognostic diagnosis for end stages renal disease

    No full text
    Glomerular filtration rate and/or creatinine are not accurate methods for renal failure prediction. This study tested homocysteine (Hcy) as a predictive and prognostic marker for end stage renal disease (ESRD). In total, 176 subjects were recruited and divided into: healthy normal group (108 subjects); mild-to-moderate impaired renal function group (21 patients); severe impaired renal function group (7 patients); and chronic renal failure group (40 patients) who were on regular hemodialysis. Blood samples were collected, and serum was separated for analysis of total Hcy, creatinine, high sensitive C-reactive protein (CRP), serum albumin, and calcium. Data showed that Hcy level was significantly increased from normal-to-mild impairment then significantly decreases from mild impairment until the patient reaches severe impairment while showing significant elevation in the last stage of chronic renal disease. Creatinine level was increased in all stages of kidney impairment in comparison with control. CRP level was showing significant elevation in the last stage. A significant decrease in both albumin and calcium was occurred in all stages of renal impairment. We conclude Hcy in combination with CRP, creatinine, albumin, and calcium can be used as a prognostic marker for ESRD and an early diagnostic marker for the risk of renal failure

    Occupational risk factors for symptomatic lumbar disc herniation; a case-control study

    No full text
    Background: Previous studies mostly did not separate between symptomatic disc herniation combined with osteochondrosis/spondylosis of the lumbar spine and symptomatic disc herniation in radiographically normal intervertebral spaces. This may at least in part explain the differences in the observed risk patterns. Aims: To investigate the possible aetiological relevance of physical and psychosocial workload to lumbar disc herniation with and without concomitant osteochondrosis/spondylosis. Methods: A total of 267 cases with acute lumbar disc herniation (in two practices and four clinics) and 197 control subjects were studied. Data were gathered in a structured personal interview and analysed using logistic regression to control for age, region, nationality, and diseases affecting the lumbar spine. Cases without knowledge about osteochondrosis/spondylosis (n=42) were excluded from analysis. Risk factors were examined separately for those cases with (n=131) and without (n=94) radiographically diagnosed concomitant osteochondrosis or spondylosis. Results: There was a statistically significant positive association between extreme forward bending and lumbar disc herniation with, as well as without concomitant osteochondrosis/spondylosis. There was a statistically significant relation between cumulative exposure to weight lifting or carrying and lumbar disc herniation with, but not without, concomitant osteochondrosis/spondylosis. Cases with disc herniation reported time pressure at work as well as psychic strain through contact with clients more frequently than control subjects. Conclusions: Further larger studies are needed to verify the concept of distinct aetiologies of lumbar disc herniation in relatively younger persons with otherwise normal discs and of disc herniation in relatively older persons with structurally damaged discs

    Characterization of Microchannels Created by Metal Microneedles: Formation and Closure

    No full text
    Transdermal delivery of therapeutic agents for cosmetic therapy is limited to small and lipophilic molecules by the stratum corneum barrier. Microneedle technology overcomes this barrier and offers a minimally invasive and painless route of administration. DermaRoller®, a commercially available handheld device, has metal microneedles embedded on its surface which offers a means of microporation. We have characterized the microneedles and the microchannels created by these microneedles in a hairless rat model, using models with 370 and 770 μm long microneedles. Scanning electron microscopy was employed to study the geometry and dimensions of the metal microneedles. Dye binding studies, histological sectioning, and confocal microscopy were performed to characterize the created microchannels. Recovery of skin barrier function after poration was studied via transepidermal water loss (TEWL) measurements, and direct observation of the pore closure process was investigated via calcein imaging. Characterization studies indicate that 770 μm long metal microneedles with an average base width of 140 μm and a sharp tip with a radius of 4 μm effectively created microchannels in the skin with an average depth of 152.5 ± 9.6 μm and a surface diameter of 70.7 ± 9.9 μm. TEWL measurements indicated that skin regains it barrier function around 4 to 5 h after poration, for both 370 and 770 μm microneedles. However, direct observation of pore closure, by calcein imaging, indicated that pores closed by 12 h for 370 μm microneedles and by 18 h for 770 μm microneedles. Pore closure can be further delayed significantly under occluded conditions
    corecore