28 research outputs found
Analysis of Three-Dimensional Protein Images
A fundamental goal of research in molecular biology is to understand protein
structure. Protein crystallography is currently the most successful method for
determining the three-dimensional (3D) conformation of a protein, yet it
remains labor intensive and relies on an expert's ability to derive and
evaluate a protein scene model. In this paper, the problem of protein structure
determination is formulated as an exercise in scene analysis. A computational
methodology is presented in which a 3D image of a protein is segmented into a
graph of critical points. Bayesian and certainty factor approaches are
described and used to analyze critical point graphs and identify meaningful
substructures, such as alpha-helices and beta-sheets. Results of applying the
methodologies to protein images at low and medium resolution are reported. The
research is related to approaches to representation, segmentation and
classification in vision, as well as to top-down approaches to protein
structure prediction.Comment: See http://www.jair.org/ for any accompanying file
Guest exchange in a biomimetic Zn II cavity-complex: kinetic control by a catalytic water, through pore selection, 2nd sphere assistance, and induced-fit processes
The kinetics of ligand exchange at a Zn II center confined in a biomimetic environment is studied.info:eu-repo/semantics/publishe