5,988 research outputs found

    Short-distance and short-time structure of a unitary Fermi gas

    Full text link
    We consider the operator product expansions for unitarity fermions. We compute the dynamic structure factor S(q,w) at large frequency and wavenumber away from the one-particle peak. The overall normalization of S(q,w) is determined by Tan's contact parameter, and the dependence on q and w is obtained in closed analytic form. We also find energy deposited into the system by small, rapid variations of the inverse scattering length.Comment: 11 pages, 8 figure

    Remnant superfluid collective phase oscillations in the normal state of systems with resonant pairing

    Full text link
    The signature of superfluidity in bosonic systems is a sound wave-like spectrum of the single particle excitations which in the case of strong interactions is roughly temperature independent. In fermionic systems, where fermion pairing arises as a resonance phenomenon between free fermions and paired fermionic states (examples are: the atomic gases of lithium or potassium controlled by a Feshbach resonance, polaronic systems in the intermediary coupling regime, d-wave hole pairing in the strongly correlated Hubbard system), remnants of such superfluid characteristics are expected to be visible in the normal state. The single particle excitations maintain there a sound wave like structure for wave vectors above a certain q_{min}(T) where they practically coincide there with the spectrum of the superfluid phase for T<T_{c}. Upon approaching the transition from above this region in q-space extends down to small momenta, except for a narrow region around q=0 where such modes change into damped free particleComment: 5 pages, 3 figures; to appear in Phys Rev

    Vortex structures and zero energy states in the BCS-to-BEC evolution of p-wave resonant Fermi gases

    Full text link
    Multiply quantized vortices in the BCS-to-BEC evolution of p-wave resonant Fermi gases are investigated theoretically. The vortex structure and the low-energy quasiparticle states are discussed, based on the self-consistent calculations of the Bogoliubov-de Gennes and gap equations. We reveal the direct relation between the macroscopic structure of vortices, such as particle densities, and the low-lying quasiparticle state. In addition, the net angular momentum for multiply quantized vortices with a vorticity κ\kappa is found to be expressed by a simple equation, which reflects the chirality of the Cooper pairing. Hence, the observation of the particle density depletion and the measurement of the angular momentum will provide the information on the core-bound state and pp-wave superfluidity. Moreover, the details on the zero energy Majorana state are discussed in the vicinity of the BCS-to-BEC evolution. It is demonstrated numerically that the zero energy Majorana state appears in the weak coupling BCS limit only when the vortex winding number is odd. There exist the κ\kappa branches of the core bound states for a vortex state with vorticity κ\kappa, whereas only one of them can be the zero energy. This zero energy state vanishes at the BCS-BEC topological phase transition, because of interference between the core-bound and edge-bound states.Comment: 15 pages, 9 figures, published versio

    Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry

    Full text link
    We discuss a realization of the nonrelativistic conformal group (the Schroedinger group) as the symmetry of a spacetime. We write down a toy model in which this geometry is a solution to field equations. We discuss various issues related to nonrelativistic holography. In particular, we argue that free fermions and fermions at unitarity correspond to the same bulk theory with different choices for the near-boundary asymptotics corresponding to the source and the expectation value of one operator. We describe an extended version of nonrelativistic general coordinate invariance which is realized holographically.Comment: 14 pages; v2: typos fixed, published versio

    Crossover temperature of Bose-Einstein condensation in an atomic Fermi gas

    Full text link
    We show that in an atomic Fermi gas near a Feshbach resonance the crossover between a Bose-Einstein condensate of diatomic molecules and a Bose-Einstein condensate of Cooper pairs occurs at positive detuning, i.e., when the molecular energy level lies in the two-atom continuum. We determine the crossover temperature as a function of the applied magnetic field and find excellent agreement with the experiment of Regal et al. [Phys. Rev. Lett. 92, 040403 (2004)] that has recently observed this crossover temperature.Comment: 4 pages, 2 figure

    Atmospheric Analysis of the M/L- and M/T-Dwarf Binary Systems LHS 102 and Gliese 229

    Get PDF
    We present 0.9-2.5um spectroscopy with R~800 and 1.12-1.22um spectroscopy with R~5800 for the M dwarfs Gl 229A and LHS 102A, and for the L dwarf LHS 102B. We also report IZJHKL' photometry for both components of the LHS 102 system, and L' photometry for Gl 229A. The data are combined with previously published spectroscopy and photometry to produce flux distributions for each component of the kinematically old disk M/L-dwarf binary system LHS 102 and the kinematically young disk M/T-dwarf binary system Gliese 229. The data are analyzed using synthetic spectra generated by the latest "AMES-dusty" and "AMES-cond" models by Allard & Hauschildt. Although the models are not able to reproduce the overall slope of the infrared flux distribution of the L dwarf, most likely due to the treatment of dust in the photosphere, the data for the M dwarfs and the T dwarf are well matched. We find that the Gl 229 system is metal-poor despite having kinematics of the young disk, and that the LHS 102 system has solar metallicity. The observed luminosities and derived temperatures and gravities are consistent with evolutionary model predictions if the Gl 229 system is very young (age ~30 Myr) with masses (A,B) of (0.38,>0.007)M(sun), and the LHS 102 system is older, aged 1-10 Gyr with masses (A,B) of (0.19,0.07)M(sun).Comment: 29 pages incl. 13 figures and 5 tables;; accepted for publication in MNRA

    First Order Superfluid to Bose Metal Transition in Systems with Resonant Pairing

    Full text link
    Systems showing resonant superfluidity, driven by an exchange coupling of strength gg between uncorrelated pairs of itinerant fermions and tightly bound ones, undergo a first order phase transition as gg increases beyond some critical value gcg_c. The superfluid phase for g≤gcg \leq g_c is characterized by a gap in the fermionic single particle spectrum and an acoustic sound-wave like collective mode of the bosonic resonating fermion pairs inside this gap. For g>gcg>g_c this state gives way to a phase uncorrelated bosonic liquid with a q2q^2 spectrum.Comment: 5 pages, 3 figure

    BCS-BEC crossover in a relativistic boson-fermion model beyond mean field approximation

    Full text link
    We investigate the fluctuation effect of the di-fermion field in the crossover from Bardeen-Cooper-Schrieffer (BCS) pairing to a Bose-Einstein condensate (BEC) in a relativistic superfluid. We work within the boson-fermion model obeying a global U(1) symmetry. To go beyond the mean field approximation we use Cornwall-Jackiw-Tomboulis (CJT) formalism to include higher order contributions. The quantum fluctuations of the pairing condensate is provided by bosons in non-zero modes, whose interaction with fermions gives the two-particle-irreducible (2PI) effective potential. It changes the crossover property in the BEC regime. With the fluctuations the superfluid phase transition becomes the first order in grand canonical ensemble. We calculate the condensate, the critical temperature TcT_{c} and particle abundances as functions of crossover parameter the boson mass.Comment: The model Lagrangian is re-formulated by decomposing the complex scalar field into its real and imaginary parts. The anomalous propagators of the complex scalar are then included at tree level. All numerical results are updated. ReVTex 4, 13 pages, 10 figures, PRD accepted versio
    • …
    corecore