108 research outputs found
Many Body Correlation Corrections to Superconducting Pairing in Two Dimensions.
We demonstrate that in the strong coupling limit (the superconducting gap
is as large as the chemical potential ), which is relevant to the
high- superconductivity, the correlation corrections to the gap and
critical temperature are about 10\% of the corresponding mean field
approximation values. For the weak coupling () the correlation
corrections are very large: of the order of 100\% of the corresponding mean
field values.Comment: LaTeX 12 page
Breakdown of time-dependent mean-field theory for a one-dimensional condensate of impenetrable bosons
We show that the time-dependent nonlinear Schrodinger equation of mean-field
theory has limited utility for a one-dimensional condensate of impenetrable
bosons. Mean-field theory with its associated order parameter predicts
interference between split condensates that are recombined, whereas an exact
many-body treatment shows minimal interference.Comment: 4 pages, 2 EPS figure
Nuclear Spin Qubit Dephasing Time in the Integer Quantum Hall Effect Regime
We report the first theoretical estimate of the nuclear-spin dephasing time
T_2 owing to the spin interaction with the two-dimensional electron gas, when
the latter is in the integer quantum Hall state, in a two-dimensional
heterojunction or quantum well at low temperature and in large applied magnetic
field. We establish that the leading mechanism of dephasing is due to the
impurity potentials that influence the dynamics of the spin via virtual
magnetic spin-exciton scattering. Implications of our results for
implementation of nuclear spins as quantum bits (qubits) for quantum computing
are discussed.Comment: 19 pages in plain Te
A Method for Modeling Decoherence on a Quantum Information Processor
We develop and implement a method for modeling decoherence processes on an
N-dimensional quantum system that requires only an -dimensional quantum
environment and random classical fields. This model offers the advantage that
it may be implemented on small quantum information processors in order to
explore the intermediate regime between semiclassical and fully quantum models.
We consider in particular system-environment couplings which
induce coherence (phase) damping, though the model is directly extendable to
other coupling Hamiltonians. Effective, irreversible phase-damping of the
system is obtained by applying an additional stochastic Hamiltonian on the
environment alone, periodically redressing it and thereby irreversibliy
randomizing the system phase information that has leaked into the environment
as a result of the coupling. This model is exactly solvable in the case of
phase-damping, and we use this solution to describe the model's behavior in
some limiting cases. In the limit of small stochastic phase kicks the system's
coherence decays exponentially at a rate which increases linearly with the kick
frequency. In the case of strong kicks we observe an effective decoupling of
the system from the environment. We present a detailed implementation of the
method on an nuclear magnetic resonance quantum information processor.Comment: 12 pages, 9 figure
Vortex nucleation through edge states in finite Bose-Einstein condensates
We study the vortex nucleation in a finite Bose-Einstein condensate. Using a
set of non-local and chiral boundary conditions to solve the
Schrdinger equation of non-interacting bosons in a rotating trap, we
obtain a quantitative expression for the characteristic angular velocity for
vortex nucleation in a condensate which is found to be 35% of the transverse
harmonic trapping frequency.Comment: 24 pages, 8 figures. Both figures and the text have been revise
Interference of Bose-Einstein condensates in momentum space
We suggest an experiment to investigate the linear superposition of two
spatially separated Bose-Einstein condensates. Due to the coherent combination
of the two wave functions, the dynamic structure factor, measurable through
inelastic photon scattering at high momentum transfer , is predicted to
exhibit interference fringes with frequency period where
is the distance between the condensates. We show that the coherent
configuration corresponds to an eigenstate of the physical observable measured
in the experiment and that the relative phase of the condensates is hence
created through the measurement process.Comment: 4 pages and 2 eps figure
Tunneling in Decaying Cosmologies and the Cosmological Constant Problem
The tunneling rate, with exact prefactor, is calculated to first order in
for an empty closed Friedmann-Robertson-Walker (FRW) universe with
decaying cosmological term ( is the scale factor and
is a parameter ). This model is equivalent to a cosmology
with the equation of state . The calculations are
performed by applying the dilute-instanton approximation on the corresponding
Duru-Kleinert path integral.
It is shown that the highest tunneling rate occurs for corresponding to
the cosmic string matter universe. The obtained most probable cosmological
term, like one obtained by Strominger, accounts for a possible solution to the
cosmological constant problem.Comment: 21 pages, REVTEX, The section 3 is considerably completed including
some physical mechanisms supporting the time variation of the cosmological
constant, added references for the section 3. Accepted to be published in
Phys. Rev.
Collective dynamics of internal states in a Bose gas
Theory for the Rabi and internal Josephson effects in an interacting Bose gas
in the cold collision regime is presented. By using microscopic transport
equation for the density matrix the problem is mapped onto a problem of
precession of two coupled classical spins. In the absence of an external
excitation field our results agree with the theory for the density induced
frequency shifts in atomic clocks. In the presence of the external field, the
internal Josephson effect takes place in a condensed Bose gas as well as in a
non-condensed gas. The crossover from Rabi oscillations to the Josephson
oscillations as a function of interaction strength is studied in detail.Comment: 18 pages, 2 figure
- âŠ