29 research outputs found

    Writing Support in Higher Education : How to Use Native Checkers to Improve the Quality of Research Writing

    No full text
    The purpose of this paper is to address three claims made by the Kabara and Lai (2015) article for this journal regarding the use of “native checkers” in Japan who are hired to improve the quality of research papers. Their position was that universities should seek an alternative to hiring “native checkers” because such people lack the ability to improve an argument, and therefore, cannot improve the quality of research writing. Our paper views this as too drastic a recommendation considering these hasty generalizations. We briefly examine the problems with the Kabara and Lai (2015) proposition and then offer a way in which such checkers can and do contribute to the improvement of the quality of research writing. Because Kabara and Lai (2015) sought “alternative options,” our paper provides an example and descriptive data showing how the Graduate School of Law at Nagoya University has effectively employed such individuals to help improve the quality of theses and dissertation submissions in the department.本稿の目的は、研究論文の質を向上させるために“ネイティブチェッカー”をいかに活用できるかについて、事例をもとに検討することである。Kabara and Lai(2015)は、ネイティブチェッカーは論文の議論を改善する能力を欠いており、ネイティブチェッカーを向上させることができないので、大学はネイティブチェッカーに取って代わるものを求めるべきであるとした。本稿筆者はこの結論を性急な一般化によるあまりに思い切った勧告であると考える。そこで本稿では、Kabara and Lai(2015)の提案の問題点を簡単に検討し、そのようなチェッカーが研究論文の質の向上に貢献できる方法を提示する。これは、Kabara and Lai(2015)が残る課題とした「代替オプション」に相当する。具体的には、名古屋大学大学院法学研究科が、こうした人材をどのようにして効果的に採用し、学位論文の質を向上させているかを示す例と担当者の口述記録を提供する

    Constitutive modeling for sheet metal forming simulations

    No full text
    Abstract not available

    Plane stress yield function for aluminum alloy sheets: part 1: theory

    No full text
    A new plane stress yield function that well describes the anisotropic behavior of sheet metals, in particular, aluminum alloy sheets, was proposed. The anisotropy of the function was introduced in the formulation using two linear transformations on the Cauchy stress tensor. It was shown that the accuracy of this new function was similar to that of other recently proposed non-quadratic yield functions. Moreover, it was proved that the function is convex in stress space. A new experiment was proposed to obtain one of the anisotropy coefficients. This new formulation is expected to be particularly suitable for finite element (FE) modeling simulations of sheet forming processes for aluminum alloy sheets
    corecore