27 research outputs found
Scale issues in soil moisture modelling: problems and prospects
Soil moisture storage is an important component of the hydrological cycle and plays a key role in land-surface-atmosphere interaction. The soil-moisture storage equation in this study considers precipitation as an input and soil moisture as a residual term for runoff and evapotranspiration. A number of models have been developed to estimate soil moisture storage and the components of the soil-moisture storage equation. A detailed discussion of the impli cation of the scale of application of these models reports that it is not possible to extrapolate processes and their estimates from the small to the large scale. It is also noted that physically based models for small-scale applications are sufficiently detailed to reproduce land-surface- atmosphere interactions. On the other hand, models for large-scale applications oversimplify the processes. Recently developed physically based models for large-scale applications can only be applied to limited uses because of data restrictions and the problems associated with land surface characterization. It is reported that remote sensing can play an important role in over coming the problems related to the unavailability of data and the land surface characterization of large-scale applications of these physically based models when estimating soil moisture storage.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
First-order decay models to describe soil C-CO2 Loss after rotary tillage
To further understand the impact of tillage on CO2 emission, the applicability of two conceptual models was tested, which describe the CO2 emission after tillage as a function of the non-tilled emission plus a correction due to the tillage disturbance. Models assume that C in readily decomposable organic matter follows a first-order reaction kinetics equation as: dCsoil (t) / dt = -k Csoil (t), and that soil C-CO2 emission is proportional to the C decay rate in soil, where Csoil(t) is the available labile soil C (g m-2) at any time (t) and k is the decay constant (time-1). Two possible assumptions were tested to determine the tilled (F T) fluxes: the decay constants (k) of labile soil C before and after tillage are different (Model 1) or not (Model 2). Accordingly, C flux relationships between non-tilled (F NT) and tilled (F T) conditions are given by: F T = F NT + a1 e-a2t (model 1) and F T = a3 F NT e-a4t (model 2), where t is time after tillage. Predicted and observed CO2 fluxes presented good agreement based on the coefficient of determination (R² = 0.91). Model comparison revealed a slightly improved statistical fit of model 2, where all C pools are assigned with the same k constant. Rotary speed was related to increases in the amount of labile C available and to changes of the mean resident labile C pool available after tillage. This approach allows describing the temporal variability of tillage-induced emissions by a simple analytical function, including non-tilled emission plus an exponential term modulated by tillage and environmentally dependent parameters.Para entendimento do impacto do preparo do solo sobre as emissões de CO2 desenvolvemos e aplicamos dois modelos conceituais que são capazes de prever a emissão de CO2 do solo após seu preparo em função da emissão da parcela sem distúrbio, acrescida de uma correção devido ao preparo. Os modelos assumem que o carbono presente na matéria orgânica lábil segue uma cinética de decaimento de primeira ordem, dada pela seguinte equação: dCsoil (t) / dt = -k Csoil (t), e que a emissão de C-CO2 é proporcional a taxa de decaimento do C no solo, onde Csolo(t) é a quantidade de carbono lábil disponível no tempo (t) e k é a constante de decaimento (tempo-1). Duas suposições foram testadas para determinação das emissões após o preparo do solo (Fp): a constante de decaimento do carbono lábil do solo (k) antes e após o preparo é igual (Modelo 1) ou desigual (Modelo 2). Conseqüentemente, a relação entre os fluxos de C das parcelas sem distúrbio (F SD) e onde o preparo do solo foi conduzido (F P) são dadas por: F P = F SD + a1 e-a2t (modelo 1) e F P = a3 F SD e-a4t (modelo 2), onde t é o tempo após o preparo. Fluxos de CO2 previstos e observados relevam um bom ajuste dos resultados com coeficiente de determinação (R²) tão alto quanto 0,91. O modelo 2 produz um ajuste ligeiramente superior quando comparado com o outro modelo. A velocidade das pás da enxada rotativa foi relacionada a um aumento na quantidade de carbono lábil e nas modificações do tempo de residência médio do carbono lábil do solo após preparo. A vantagem desta metodologia é que a variabilidade temporal das emissões induzidas pelo preparo do solo pode ser descrita a partir de uma função analítica simples, que inclui a emissão da parcela sem distúrbio e um termo exponencial modulado por parâmetros dependentes do preparo e de condições ambientais onde o experimento foi conduzido
Soil moisture: A central and unifying theme in physical geography
Soil moisture is a critical component of the earth system and plays an integrative role among the various subfields of physical geography. This paper highlights not just how soil moisture affects atmospheric, geomorphic, hydrologic, and biologic processes but that it lies at the intersection of these areas of scientific inquiry. Soil moisture impacts earth surface processes in such a way that it creates an obvious synergistic relationship among the various subfields of physical geography. The dispersive and cohesive properties of soil moisture also make it an important variable in regional and microclimatic analyses, landscape denudation and change through weathering, runoff generation and partitioning, mass wasting, and sediment transport. Thus, this paper serves as a call to use research in soil moisture as an integrative and unifying theme in physical geography. © The Author(s) 2010