3 research outputs found
Simulation Study of Photon-to-Digital Converter (PDC) Timing Specifications for LoLX Experiment
The Light only Liquid Xenon (LoLX) experiment is a prototype detector aimed
to study liquid xenon (LXe) light properties and various photodetection
technologies. LoLX is also aimed to quantify LXe's time resolution as a
potential scintillator for 10~ps time-of-flight (TOF) PET. Another key goal of
LoLX is to perform a time-based separation of Cerenkov and scintillation
photons for new background rejection methods in LXe experiments. To achieve
this separation, LoLX is set to be equipped with photon-to-digital converters
(PDCs), a photosensor type that provides a timestamp for each observed photon.
To guide the PDC design, we explore requirements for time-based Cerenkov
separation. We use a PDC simulator, whose input is the light information from
the Geant4-based LoLX simulation model, and evaluate the separation quality
against time-to-digital converter (TDC) parameters. Simulation results with TDC
parameters offer possible configurations supporting a good separation. Compared
with the current filter-based approach, simulations show Cerenkov separation
level increases from 54% to 71% when using PDC and time-based separation. With
the current photon time profile of LoLX simulation, the results also show 71%
separation is achievable with just 4 TDCs per PDC. These simulation results
will lead to a specification guide for the PDC as well as expected results to
compare against future PDC-based experimental measurements. In the longer term,
the overall LoLX results will assist large LXe-based experiments and motivate
the assembly of a LXe-based TOF-PET demonstrator system.Comment: 5 pages, 7 figure
Optimization of a Mass Trapping Method against the Striped Cucumber Beetle <i>Acalymma vittatum</i> in Organic Cucurbit Fields
The striped cucumber beetle (SCB) Acalymma vittatum (F.) (Coleptera: Chrysomelidae) is a prime problem in North American cucurbit crops. While certain chemical pesticides efficiently control SCB in conventional cucurbit fields, alternative solutions are required due to the ever-evolving regulations on pesticides. For organic producers, very few control methods exist. A novel mass trapping method demonstrates the potential of controlling SCBs using floral-based semiochemical baited traps in cucurbit crops. The goals of this study were to (1) determine whether baited traps capture more SCBs than unbaited ones, and (2) optimize the trapping method by comparing different trap types and different commercially available attractants to maximize SCB captures while minimizing non-target species captures. The results of a first experiment showed that baited traps captured significantly more SCBs than unbaited ones. Baited traps also captured significantly more bees and hoverflies than unbaited ones. In a second experiment these unwanted captures were drastically reduced by using traps with ten 4 mm in diameter holes per side. Finally, a third experiment demonstrated that the attractant 40CT313 was the most efficient at capturing SCB compared to other tested lures. Overall, the optimized mass trapping technique demonstrated a potential to effectively control SCB populations in organic cucurbit crops