13 research outputs found

    Computational Quality of Service for Scientific Components

    No full text

    A CSP and tabulation based adaptive chemistry model

    No full text
    We demonstrate the feasibility of a new strategy for the construction of an adaptive chemistry model that is based on an explicit integrator stabilized by an approximation of the Computational Singular Perturbation (CSP)-slow-manifold projector. We examine the effectiveness and accuracy of this technique first using a model problem with variable stiffness. We assess the effect of using an approximation of the CSP-slow-manifold by either reusing the CSP vectors calculated in previous steps or from a pre-built tabulation. We find that while accuracy is preserved, the associated CPU cost was reduced substantially by this method. We used two ignition simulations – hydrogen–air and heptane–air mixtures – to demonstrate the feasibility of using the new method to handle realistic kinetic mechanisms. We test the effect of utilizing an approximation of the CSP-slow-manifold and find that its use preserves the order of the explicit integrator, produces no degradation in accuracy, and results in a scheme that is competitive with traditional implicit integration. Further analysis on the performance data demonstrates that the tabulation of the CSP-slow-manifold provides an increasing level of efficiency as the size of the mechanism increases. From the software engineering perspective, all the machinery developed is Common Component Architecture compliant, giving the software a distinct advantage in the ease of maintainability and flexibility in its utilization. Extension of this algorithm is underway to implement an automated tabulation of the CSP-slow-manifold for a detailed chemical kinetic system either off-line, or on-line with a reactive flow simulation code

    A sparse reconstruction method for the estimation of multi-resolution emission fields via atmospheric inversion

    No full text
    Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO<sub>2</sub> flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) and fitting. Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO<sub>2</sub> (ffCO<sub>2</sub>) emissions in the lower 48 states of the USA. <br><br> Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. <br><br> Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO<sub>2</sub> emissions and synthetic observations of ffCO<sub>2</sub> concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of 2. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems

    On chain branching and its role in homogeneous ignition and premixed flame propagation

    No full text
    The role of chain branching in a chemical kinetic system was investigated by analyzing the eigenvalues of the system. We found that in the homogeneous ignition of the hydrogen/air and methane/air mixtures, the branching mechanism gives rise to explosive modes (eigenvalues with positive real parts) in the induction period as expected; however, in their respective premixed flames, we found none. Thus, their existence is not a necessary condition for the propagation of a premixed flame. © 2005 Elsevier Ltd
    corecore