4,246 research outputs found
Combining causal model and focus group discussions experiences learned from a socio-anthropological research on the differing perceptions of caretakers and health professionals on children's health (Bolivia/Peru)
The paper discusses the utility of constructing causal models in focus groups. This was experienced as a complement to an in-depth ethnographic research on the differing perceptions of caretakers and health professionals on child's growth and development in Peru and Bolivia. The rational, advantages, difficulties and necessary adaptations of combining the two techniques are discussed on the basis of concrete examples. Authors conclude that the building of a causal model in a focus group session can be useful in comparing lay etiologies of diseases as perceived by different categories of caretakers and health professionals and in identifying specific health risks faced by children. Causal model building in a focus group can help renew discussions and participants'interest but its use is only justified when the study concerns the perception of the causality of a given phenomenon
Naming Conventions for the Large Hadron Collider Project
This report gives the procedures for defining standard abbreviations for the various machine components of the Large Hadron Collider (LHC) Project, as well as for the surface buildings and the underground Civil Engineering works of the LHC. The contents of this report has been approved by the LHC Project Leader and is published in the form of a Project Report in order to allow its immediate implementation. It will be incorporated later in the Quality Assurance Plan of the LHC Project which is under preparation
Spatially heterogeneous dynamics in granular compaction
We prove the emergence of spatially correlated dynamics in slowly compacting
dense granular media by analyzing analytically and numerically multi-point
correlation functions in a simple particle model characterized by slow
non-equilibrium dynamics. We show that the logarithmically slow dynamics at
large times is accompanied by spatially extended dynamic structures that
resemble the ones observed in glass-forming liquids and dense colloidal
suspensions. This suggests that dynamic heterogeneity is another key common
feature present in very different jamming materials.Comment: 4 pages, 3 figure
Investigations of OTR screen surfaces and shapes
Optical transition radiation (OTR) has proven to be a flexible and effective tool for measuring a wide range of beam parameters, in particular the beam divergence and the transverse beam profile. It is today an established and widely used diagnostic method providing linear real-time measurements. Measurements in the CLIC Test Facility (CTF3) showed that the performance of the present profile monitors is limited by the optical acceptance of the imaging system. In this paper, two methods to improve the systems' performance are presented and results from measurements are shown. First, the influence of the surface quality of the OTR screen itself is addressed. Several possible screen materials have been tested to which different surface treatment techniques were applied. Results from the measured optical characteristics are given. Second, a parabolic-shaped screen support was investigated with the aim of providing an initial focusing of the emitted radiation and thus to reduce the problem of aperture limitation
Scaling Law in Carbon Nanotube Electromechanical Devices
We report a method for probing electromechanical properties of multiwalled
carbon nanotubes(CNTs). This method is based on AFM measurements on a doubly
clamped suspended CNT electrostatically deflected by a gate electrode. We
measure the maximum deflection as a function of the applied gate voltage. Data
from different CNTs scale into an universal curve within the experimental
accuracy, in agreement with a continuum model prediction. This method and the
general validity of the scaling law constitute a very useful tool for designing
actuators and in general conducting nanowire-based NEMS.Comment: 12 pages, 4 figures. To be published in Phys. Rev. Let
Steady State Behavior of Mechanically Perturbed Spin Glasses and Ferromagnets
A zero temperature dynamics of Ising spin glasses and ferromagnets on random
graphs of finite connectivity is considered, like granular media these systems
have an extensive entropy of metastable states. We consider the problem of what
energy a randomly prepared spin system falls to before becoming stuck in a
metastable state. We then introduce a tapping mechanism, analogous to that of
real experiments on granular media, this tapping, corresponding to flipping
simultaneously any spin with probability , leads to stationary regime with a
steady state energy . We explicitly solve this problem for the one
dimensional ferromagnet and spin glass and carry out extensive
numerical simulations for spin systems of higher connectivity. The link with
the density of metastable states at fixed energy and the idea of Edwards that
one may construct a thermodynamics with a flat measure over metastable states
is discussed. In addition our simulations on the ferromagnetic systems reveal a
novel first order transition, whereas the usual thermodynamic transition on
these graphs is second order.Comment: 11 pages, 7 figure
- âŠ