5 research outputs found

    Microbial signatures of protected and impacted Northern Caribbean reefs: changes from Cuba to the Florida Keys.

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Weber, L., GonzĂĄlez-DĂ­az, P., Armenteros, M., Ferrer, V. M., Bretos, F., Bartels, E., Santoro, A. E., & Apprill, A. Microbial signatures of protected and impacted Northern Caribbean reefs: changes from Cuba to the Florida Keys. Environmental Microbiology, 22(1), (2019): 499-519, doi: 10.1111/1462-2920.14870.There are a few baseline reef‐systems available for understanding the microbiology of healthy coral reefs and their surrounding seawater. Here, we examined the seawater microbial ecology of 25 Northern Caribbean reefs varying in human impact and protection in Cuba and the Florida Keys, USA, by measuring nutrient concentrations, microbial abundances, and respiration rates as well as sequencing bacterial and archaeal amplicons and community functional genes. Overall, seawater microbial composition and biogeochemistry were influenced by reef location and hydrogeography. Seawater from the highly protected ‘crown jewel’ offshore reefs in Jardines de la Reina, Cuba had low concentrations of nutrients and organic carbon, abundant Prochlorococcus, and high microbial community alpha diversity. Seawater from the less protected system of Los Canarreos, Cuba had elevated microbial community beta‐diversity whereas waters from the most impacted nearshore reefs in the Florida Keys contained high organic carbon and nitrogen concentrations and potential microbial functions characteristic of microbialized reefs. Each reef system had distinct microbial signatures and within this context, we propose that the protection and offshore nature of Jardines de la Reina may preserve the oligotrophic paradigm and the metabolic dependence of the community on primary production by picocyanobacteria.We thank Justin Ossolinski, Sean McNally, Tom Lankiewicz, LĂĄzaro GarcĂ­a, and the crew from R/V Felipe Poey for assistance with sample collection and processing. We thank Marlin Nauticas and Marinas for the use of their dive facilities. We thank Chris Wright, Mark Band, and staff at the University of Illinois W. M. Keck Center for Comparative and Functional Genomics for sequencing assistance, Karen Selph for training in flow cytometry, Krista Longnecker for TOC and TN analyses, and Joe Jennings for nutrient analyses. Funding was provided to A.A. and A.E.S. by a Dalio Explore award from the Dalio Foundation (now 'OceanX') and analysis time was supported with the NSF Graduate Research Fellowship award to L.W. and NSF award OCE 1736288 to A.A. Research was conducted under the LH112 AN (25) 2015 licence granted by the Cuban Center for Inspection and Environmental Control

    Spatial heterogeneity of epibenthos on artificial reefs: Fouling communities in the early stages of colonization on an East Australian shipwreck

    Full text link
    Artificial reefs are spatially complex habitats and serve as good model systems to study patterns of community succession and the response of epibiota to environmental clines over small spatial scales. Here, we quantified spatial heterogeneity in community composition and diversity of fouling communities across a number of environmental gradients that included water depth, surface orientation of habitats, exposure to currents, and shelter. Assemblage structure was quantified by spatially replicated photo transects on a recently scuttled large navy ship off the East Australian coast, lying in 27 m of water. A rich assemblage of epifauna had colonized the wreck within a year, dominated by barnacles, sponges and bryozoans. Community structure varied significantly over small spatial scales of meters to tens of meters. Depth, surface orientation and exposure were the major environmental drivers. Assemblages were substantially less diverse and abundant on the deepest (23 m near the seafloor) part of the hull with residual antifouling paint, on sheltered surfaces inside the wreck, and on the sediment-laden horizontal surfaces. Overall, the wrecks’ habitat complexity corresponds with small-scale heterogeneity in the fouling communities. This study supports the notion that wrecks enhance local diversity and biomass within the habitat mosaic of their location, and habitat complexity may be an important mechanism for this, as demonstrated by the large spatial variability in the assemblages documented here

    A Contingent Trip Model for Estimating Rail-trail Demand

    Full text link
    The authors develop a contingent trip model to estimate the recreation demand for and value of a potential rail-trail site in north-east Georgia. The contingent trip model is an alternative to travel cost modelling useful for ex ante evaluation of proposed recreation resources or management alternatives. The authors estimate the empirical demand for trips using a negative binomial regression specification. Their findings indicate a per-trip consumer surplus ranging from US18.46toUS18.46 to US29.23 and a price elasticity of m 0.68. In aggregate, they estimate that the rail-trail would receive approximately 416 213 recreation visits per year by area households and account for a total consumer surplus in excess of US$7.5 million.
    corecore