11,131 research outputs found

    Experiences of teaching UML within the information systems curriculum

    Get PDF
    The Unified Modelling Language (UML) has been a standard modelling language for the development of software intensive systems since 2000. As a consequence, the information systems (IS) curriculum, at the Cavendish School of Computer Science, University of Westminster in London, had UML teaching incorporated two years ago. We have encouraged the introduction to and use of UML in modules that replaced traditional approaches to IS development. In this paper we report on experiences of using UML within the two modules of our undergraduate curriculum, delivered by the IS department. The first module is taught in the second year, i.e. at level 5, and delivers requirements analysis with UML. The second module uses the UML for modelling and designing distributed business applications and is taught in the final year, at level 6. In both modules it is assumed that an introduction to modelling in IS, with the syntax and semantics of a selection of UML modelling elements and diagrams, has been done earlier. We single out some problems and give a rationale for changes in the next academic yea

    Experiences of revalidating the undergraduate and postgraduate courses within the information systems curricula at University of Westminster, UK

    Get PDF
    Information systems (IS) is the commonly accepted title for academic programs focusing on applied information technology provided by a range of Universities in the UK. The University of Westminster based in central London has successfully run BSc and MSc courses in IS for more than a decade. The courses underwent a major revision in 2002 focusing on subject content, construction of courses and teaching/learning strategies. We address the purpose of course reviews within the UK higher education (HE) environment, gives a rationale for our curriculum changes, describes the revalidated IS courses at both BSc and MSc levels including our teaching and assessment strategies, and comments on our progress to date

    Magnetic phase diagram of the antiferromagnetic pyrochlore Gd2Ti2O7

    Full text link
    Gd2Ti2O7 is a highly frustrated antiferromagnet on a pyrochlore lattice, where apart from the Heisenberg exchange the spins also interact via dipole-dipole forces. We report on low-temperature specific heat measurements performed on single crystals of Gd2Ti2O7 for three different directions of an applied magnetic field. The measurements reveal the strongly anisotropic behaviour of Gd2Ti2O7 in a magnetic field despite the apparent absence of a significant single-ion anisotropy for Gd3+. The H-T phase diagrams are constructed for H//111], H//[110] and H//[112]. The results indicate that further theoretical work beyond a simple mean-field model is required.Comment: 4 figure

    Crystal growth and properties of the non-centrosymmetric superconductor, Ru7B3

    Full text link
    We describe the crystal growth of high quality single crystals of the non-centrosymmetric superconductor, Ru7B3 by the floating zone technique, using an optical furnace equipped with xenon arc lamps. The crystals obtained are large and suitable for detailed measurements, and have been examined using x-ray Laue patterns. The superconducting properties of the crystals obtained have been investigated by magnetisation and resistivity measurements. Crystals have also been grown starting with enriched 11B isotope, making them suitable for neutron scattering experiments.Comment: 4 pages, 5 figures. Accepted for publication in Journal of Crystal Growt

    Superconducting and normal-state properties of the noncentrosymmetric superconductor Re6Zr

    Get PDF
    We systematically investigate the normal and superconducting properties of non-centrosymmetric Re6_{6}Zr using magnetization, heat capacity, and electrical resistivity measurements. Resistivity measurements indicate Re6_{6}Zr has poor metallic behavior and is dominated by disorder. Re6_6Zr undergoes a superconducting transition at Tc=(6.75±0.05)T_{\mathrm{c}} = \left(6.75\pm0.05\right) K. Magnetization measurements give a lower critical field, μ0Hc1=(10.3±0.1)\mu_{0}H_{\mathrm{c1}} = \left(10.3 \pm 0.1\right) mT. The Werthamer-Helfand-Hohenberg model is used to approximate the upper critical field μ0Hc2=(11.2±0.2)\mu_{0}H_{\mathrm{c2}} = \left(11.2 \pm 0.2\right) T which is close to the Pauli limiting field of 12.35 T and which could indicate singlet-triplet mixing. However, low-temperature specific-heat data suggest that Re6_{6}Zr is an isotropic, fully gapped s-wave superconductor with enhanced electron-phonon coupling. Unusual flux pinning resulting in a peak effect is observed in the magnetization data, indicating an unconventional vortex state.Comment: 11 pages, 7 figures, 2 table

    Comparative study of the centrosymmetric and non-centrosymmetric superconducting phases of Re3W using muon-spin spectroscopy and heat capacity measurements

    Full text link
    We compare the low-temperature electronic properties of the centrosymmetric (CS) and non-centrosymmetric (NCS) phases of Re3W using muon-spin spectroscopy and heat capacity measurements. The zero-field muSR results indicate that time-reversal symmetry is preserved for both structures of Re3W. Transverse-field muon spin rotation has been used to study the temperature dependence of the penetration depth lambda(T) in the mixed state. For both phases of Re3W, lambda(T) can be explained using a single-gap s-wave BCS model. The magnetic penetration depth at zero temperature, lambda(0), is 164(7) and 418(6) nm for the centrosymmetric and the non-centrosymmetric phases of Re3W respectively. Low-temperature specific heat data also provide evidence for an s-wave gap-symmetry for the two phases of Re3W. Both the muSR and heat capacity data show that the CS material has a higher Tc and a larger superconducting gap Delta(0) at 0 K than the NCS compound. The ratio Delta(0)/kBTc indicates that both phases of Re3W should be considered as strong-coupling superconductors.Comment: 7 pages, to appear in Physical Review

    Contemporary outcome measures in acute stroke research: choice of primary outcome measure

    Get PDF
    BACKGROUND AND PURPOSE: The diversity of available outcome measures for acute stroke trials is challenging and implies that the scales may be imperfect. To assist researchers planning trials and to aid interpretation, this article reviews and makes recommendations on the available choices of scales. The aim is to identify an approach that will be universally accepted and that should be included in most acute trials, without seeking to restrict options for special circumstances. METHODS: The article considers outcome measures that have been widely used or are currently advised. It examines desirable properties for outcome measures such as validity, relevance, responsiveness, statistical properties, availability of training, cultural and language issues, resistance to comorbidity, as well as potential weaknesses. Tracking and agreement among outcomes are covered. RESULTS: Typical ranges of scores for the common scales are described, along with their statistical properties, which in turn influence optimal analytic techniques. The timing of recovery on scores and usual practice in trial design are considered. CONCLUSIONS: The preferred outcome measure for acute trials is the modified Rankin Scale, assessed at 3 months after stroke onset or later. The interview should be conducted by a certified rater and should involve both the patient and any relevant caregiver. Incremental benefits at any level of the modified Rankin Scale may be acceptable. The modified Rankin Scale is imperfect but should be retained in its present form for comparability with existing treatment comparisons. No second measure should be required, but correlations with supporting scales may be used to confirm consistency in direction of effects on other measures

    Speech Analysis

    Get PDF
    Contains research objectives and reports on one research project.National Science Foundatio

    Superconducting and magnetic properties of Sr3Ir4Sn13

    Full text link
    Magnetization and muon spin relaxation or rotation (muSR) measurements have been performed to study the superconducting and magnetic properties of Sr3Ir4Sn13. From magnetization measurements the lower and upper critical fields of Sr3Ir4Sn13 are found to be 81(1) Oe and 14.4(2) kOe, respectively. Zero-field muSR data show no sign of any magnetic ordering or weak magnetism in Sr3Ir4Sn13. Transverse-field muSR measurements in the vortex state provided the temperature dependence of the magnetic penetration depth. The dependence of penetration depth with temperature is consistent with the existence of single s-wave energy gap in the superconducting state of Sr3Ir4Sn13 with a gap value of 0.82(2) meV at absolute zero temperature. The magnetic penetration depth at zero temperature is 291(3) nm. The gap to Tc ratio is 2.1(1), indicates that Sr3Ir4Sn13 should be considered as a strong-coupling superconductor.Comment: 6 pages, 5 figure

    Probing the superconducting ground state of the noncentrosymmetric superconductors CaTSi3 (T = Ir, Pt) using muon-spin relaxation and rotation

    Full text link
    The superconducting properties of CaTSi3 (where T = Pt and Ir) have been investigated using muon spectroscopy. Our muon-spin relaxation results suggest that in both these superconductors time-reversal symmetry is preserved, while muon-spin rotation data show that the temperature dependence of the superfluid density is consistent with an isotropic s-wave gap. The magnetic penetration depths and upper critical fields determined from our transverse-field muon-spin rotation spectra are found to be 448(6) and 170(6) nm, and 3800(500) and 1700(300) G, for CaPtSi3 and CaIrSi3 respectively. The superconducting coherence lengths of the two materials have also been determined and are 29(2) nm for CaPtSi3 and 44(4) nm for CaIrSi3.Comment: 6 pages, 7 figure
    • …
    corecore