2 research outputs found

    Asymmetric adjustment

    No full text
    \u3cp\u3eA method of adjusting a signal processing parameter for a first hearing aid and a second hearing aid forming parts of a binaural hearing aid system to be worn by a user is provided. The binaural hearing aid system comprises a user specific model representing a desired asymmetry between a first ear and a second ear of the user. The method includes detecting a request for processing a parameter change at the first hearing aid, adjusting the signal processing parameter in the first hearing aid, and adjusting a processing parameter for the second hearing aid based on the request for processing parameter change and the user specific model.\u3c/p\u3

    The learning hearing aid: common-sense reasoning in hearing aid circuits

    No full text
    This article discusses how hearing aid engineers have applied the Bayesian probability theory approach to the problem of hearing aid fitting. Currently more an art than a science, it is likely that probability theory will play a large role in future generations of fitting software used by dispensing professionals. We will show that probability theory is consistent with common-sense reasoning, a feature that is not shared by alternative mathematical frameworks for intelligent reasoning. While probability theory gets to the same answers as a consistently reasoning human expert, it can deal with larger problems than a typical human is capable of handling. Since human expertise cannot be replaced by a mathematical system, we expect that mathematical reasoning systems, like the one described here, will serve as an assistant to the dispenser in difficult fitting tasks
    corecore