20 research outputs found
Intergroup Competition as a Double-edged Sword: How Sex Composition Regulates the Effects of Competition on Group Creativity
Building on social role theory, we extend a contingency perspective on intergroup competition proposing that having groups compete against one another is stimulating to the creativity of groups composed largely or exclusively of men but detrimental to the creativity of groups composed largely or exclusively of women. We tested this idea in two separate studies: a laboratory experiment (Study 1) and a field study (Study 2). Study 1 showed that competition had the expected positive effects on the creativity of groups composed mostly or exclusively of men and produced the predicted negative effects on the creativity of groups composed of women, even though the latter effects emerged at the high end of the competition spectrum and for sex-homogeneous groups only. Results of Study 1 also revealed that within-group collaboration mediated the joint effects of competition and sex composition on group creativity. Study 2 replicated the results of Study 1 in a field setting involving research and development teams. We discuss the implications of these findings for theory and practice. </jats:p
Homophily and Contagion Are Generically Confounded in Observational Social Network Studies
We consider processes on social networks that can potentially involve three
factors: homophily, or the formation of social ties due to matching individual
traits; social contagion, also known as social influence; and the causal effect
of an individual's covariates on their behavior or other measurable responses.
We show that, generically, all of these are confounded with each other.
Distinguishing them from one another requires strong assumptions on the
parametrization of the social process or on the adequacy of the covariates used
(or both). In particular we demonstrate, with simple examples, that asymmetries
in regression coefficients cannot identify causal effects, and that very simple
models of imitation (a form of social contagion) can produce substantial
correlations between an individual's enduring traits and their choices, even
when there is no intrinsic affinity between them. We also suggest some possible
constructive responses to these results.Comment: 27 pages, 9 figures. V2: Revised in response to referees. V3: Ditt
Dynamic networks and behavior: separating selection from influence.
A current problem in the analysis of behavioral dynamics, given a simultaneously evolving social network, is the difficulty of separating effects of partner selection from effects of social influence. In this paper we present a recently developed family of statistical models that enables researchers to separate the two effects in a statistically adequate manner. To illustrate our method we make use of a three-wave panel measured in the years 1995-1997 at a school in the West of Scotland. We are able to assess the strength of selection and influence mechanisms associated with friendship networks of substance-using adolescents
Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences
The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported
by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on
18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based
researchers who signed it in the short time span from 20 September to 6 October 2016
Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study
Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation
Treating gliomas with glucocorticoids: from bedside to bench
Glucocorticoids are used in the treatment of gliomas to decrease tumour-associated oedema and to reduce the risk of acute encephalopathy associated with radiotherapy. However, the mechanisms by which glucocorticoids work are still largely unknown. In this paper, we survey the experimental and clinical evidence for the effects of glucocorticoids on tumour cell proliferation, apoptosis and sensitivity to chemotherapy, angiogenesis and vascular permeability. We then review current guidelines on the choice of molecule, dose and duration of glucocorticoid treatment for gliomas