306 research outputs found

    Graphene: a perfect nanoballoon

    Full text link
    We have performed a first-principles density functional theory investigation of the penetration of helium atoms through a graphene monolayer with defects. The relaxation of the graphene layer caused by the incoming helium atoms does not have a strong influence on the height of the energy barriers for penetration. For defective graphene layers, the penetration barriers decrease exponentially with the size of the defects but they are still sufficiently high that very large defects are needed to make the graphene sheet permeable for small atoms and molecules. This makes graphene a very promising material for the construction of nanocages and nanomembranes.Comment: 4 pages, 4 figures, submitted to Applied Physics Letter

    Paramagnetic adsorbates on graphene: a charge transfer analysis

    Full text link
    We introduce a modified version of the Hirshfeld charge analysis method and demonstrate its accurateness by calculating the charge transfer between the paramagnetic molecule NO2 and graphene. The charge transfer between paramagnetic molecules and a graphene layer as calculated with ab initio methods can crucially depend on the size of the supercell used in the calculation. This has important consequences for adsorption studies involving paramagnetic molecules such as NO2 physisorbed on graphene or on carbon nanotubes.Comment: 4 pages, 4 figures, submitted to Applied Physics Letter

    Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study

    Full text link
    Motivated by the recent realization of graphene sensors to detect individual gas molecules, we investigate the adsorption of H2O, NH3, CO, NO2, and NO on a graphene substrate using first-principles calculations. The optimal adsorption position and orientation of these molecules on the graphene surface is determined and the adsorption energies are calculated. Molecular doping, i.e. charge transfer between the molecules and the graphene surface, is discussed in light of the density of states and the molecular orbitals of the adsorbates. The efficiency of doping of the different molecules is determined and the influence of their magnetic moment is discussed.Comment: 6 pages, 6 figure

    First-principles investigation of graphene fluoride and graphane

    Full text link
    Different stoichiometric configurations of graphane and graphene fluoride are investigated within density functional theory. Their structural and electronic properties are compared, and we indicate the similarities and differences among the various configurations. Large differences between graphane and graphene fluoride are found that are caused by the presence of charges on the fluorine atoms. A new configuration that is more stable than the boat configuration is predicted for graphene fluoride. We also perform GW calculations for the electronic band gap of both graphene derivatives. These band gaps and also the calculated Young's moduli are at variance with available experimental data. This might indicate that the experimental samples contain a large number of defects or are only partially covered with H or F.Comment: 6 pages, 3 figures, submitted to PR

    Introduction to the special issue on the 36th European Solid-State Circuits Conference (ESSCIRC)

    Get PDF
    The 22 papers in this special issue were originally presented at the 2010 European Solid-State Circuits Conference (ESSCIRC). The conference was jointly organized with the European Solid-State Device Research Conference and held September 14-16 in Seville, Spain. Papers cover the traditional ESSCIRC topics of analog circuits, digital circuits, data converters, sensors and imagers, and communications and RF circuits. Energy harvesting and biomedical circuits were also within ESSCIRC 2010 topics and are represented in this issue
    corecore