48 research outputs found

    The Effect of Stimulation Frequency on the Ionic Currents in Single Atrial Cells of the Rabbit

    Get PDF
    In single atrial cells isolated from rabbit hearts the calcium current and [Caj-dependent transient outward current were recorded using the whole-cell clamp technique and the effect of stimulation frequency on these currents was investigated. Voltage dependent transient outward current, which contributes the initial, rapid repolarization phase of the action potential and is frequency-dependent, was also investigated. Increasing the stimulation frequency from O. 025 Hz to 1 Hz had no effect on the calcium current and [Caj-dependent transient outward current and greatly inhibited voltage-dependent transient outward current. The amplitude of voltage dependent transient outward current increased as the membrane potential became depolarized, its steady-state inactivation spans the voltage range -70 mV to -10 mVand steady-state activation curve -30 mV to 30 mV. Within the range of the resting membrane potential (at -70 mV), the voltage-dependent recovery time constant was 1. 3 s. The reversal potential was about -50 mV. Voltage-dependent transient outward current was inhibited by K-channel blockers and not inhibited by modulation of [Cali. From the above findings, it is concluded that due to the amplitude and voltage-dependent recovery time constant which were the basic mechanisms for frequency-dependency, the voltage- dependent transient outward current contributes the initial, rapid repolarization phase and changed the action potential configuration according to stimulation frequency in the rabbit atrium

    Perspectives of physiome research

    Get PDF
    Physiome is an area of physiology to generate a whole system by analyzing and integrating scattered and discrete information. The term “physiome” was first introduced by James B. Bassingthwaight in 1993, and officially announced by the International Union of Physiological Societies as the new field to be accomplished in the 21st century. In this review, I introduce the concepts of physiome, why physiome should be pursued, what kind of strategy is necessary to form physiome, and how physiome can be used

    Body temperature regulation: Sasang typology-based perspective

    No full text
    Global warming induces a dramatic elevation of heat-related morbidity and mortality worldwide. Individual variation of heat stress vulnerability depends on various factors such as age, gender, living area and conditions, health status, and individual innate characteristics. Sasang typology is a unique form of Korean traditional medicine, which is based on the hypothesis that constitution-specific traits of an individual determine the particular distinctive tendency in various aspects, including responses to the external environment. Recent scientific evidence shows that Sasang types differ in body composition, metabolic profile, susceptibility to certain disease patterns, and perspiration. This review aims to interpret these findings under the context of heat balance consisting of heat production (Hprod), heat loss (Hloss), and heat load (Hload). Based on the published data, at a given body mass, the TaeEum type tended to have a lower Hprod at rest and at the exhaustion state, which may indicate the lower metabolic efficiency of this type. Meanwhile, the surface-to-mass ratio and heat capacity of the TaeEum type appear to be lower, implying a lower heat dissipation capacity and heat storage tolerance. Thus, because of these characteristics, the TaeEum type seems to be more vulnerable to heat stress than the other constitutions. Differences in temperature regulation across constitutional types should be taken into account in daily physical activity, health management, and medical research

    Pulmonary Function Difference in Sasang Constitutional Types

    No full text
    The purpose of this study was to determine the differences in pulmonary function among Sasang constitutional types in young adults. The Sasang Constitutional Analysis Tool (SCAT), pulmonary function tests (PFTs), and cardiopulmonary exercise tests were conducted in 417 participants from 2009 to 2015. Subjects with the Tae-Eum (TE) type had significantly higher inspiratory capacity (IC) and inspiratory reserve volume (IRV) values than those with the So-Yang (SY) and So-Eum (SE) types (P<0.0001). The TE and SY types showed higher forced vital capacity (FVC) and forced expiratory volume in 1 sec (FEV1) values than the SE type (P<0.0001). An increase in IRV and a decrease in expiratory reserve volume (ERV) in TE type males remained even after adjusting for covariate factors. These results indicate that young adults with the TE type have weaker lung function than those with the other constitutional types, suggesting its innate physiological pulmonary features

    Development of a Portable Respiratory Gas Analyzer for Measuring Indirect Resting Energy Expenditure (REE)

    No full text
    Objective. A rapidly growing home healthcare market has resulted in the development of many portable or wearable products. Most of these products measure, estimate, or calculate physiologic signals or parameters, such as step counts, blood pressure, or electrocardiogram. One of the most important applications in home healthcare is monitoring one’s metabolic state since the change of metabolic state could reveal minor or major changes in one’s health condition. A simple and noninvasive way to measure metabolism is through breath monitoring. With breath monitoring by breath gas analysis, two important indicators like the respiratory quotient (RQ) and resting energy exposure (REE) can be calculated. Therefore, we developed a portable respiratory gas analyzer for breath monitoring to monitor metabolic state, and the performance of the developed device was tested in a clinical trial. Approach. The subjects consisted of 40 healthy men and women. Subjects begin to measure exhalation gas using Vmax 29 for 15 minutes. After that, subjects begin to measure exhalation gas via the developed respiratory gas analyzer. Finally, the recorded data on the volume of oxygen (VO2), volume of carbon dioxide (VCO2), RQ, and REE were used to validate correlations between Vmax 29 and the developed respiratory gas analyzer. Results. The results showed that the root-mean-square errors (RMSE) values of VCO2, VO2, RQ, and REE are 0.0315, 0.0417, 0.504, and 0.127. Bland-Altman plots showed that most of the VCO2, VO2, RQ, and REE values are within 95% of the significance level. Conclusions. We have successfully developed and tested a portable respiratory gas analyzer for home healthcare. However, there are limitations of the clinical trial; the number of subjects is small in size, and the age and race of subjects are confined. The developed portable respiratory gas analyzer is a cost-efficient method for measuring metabolic state and a new application of home healthcare

    Lower cellular metabolic power can be an explanation for obesity trend in Tae-Eum type: hypothesis and clinical observation

    No full text
    Background: Those classified as Tae-Eum (TE)-type people in Sasang constitutional medicine (SCM) are prone to obesity. Although extensive clinical observations have confirmed this tendency, the underlying physiological mechanisms are unknown. Here, we propose a novel hypothesis using integrative physiology to explain this phenomenon. Methods: Hypoactive lung function in the TE type indicates that respiration is attenuated at the cellular level—specifically, mitochondrial oxygen consumption. Because a functional reduction in cellular energy metabolism is suggestive of intrinsic hypoactivity in the consumption (or production) of metabolic energy, we reasoned that this tendency can readily cause weight gain via an increase in anabolism. Thus, this relationship can be derived from the graph of cellular metabolic power plotted against body weight. We analyzed the clinical data of 548 individuals to test this hypothesis. Results: The statistical analysis revealed that the cellular metabolic rate was lower in TE-type individuals and that their percentage of obesity (body mass index >25) was significantly higher compared to other constitutional groups. Conclusion: Lower cellular metabolic power can be an explanation for the obesity trend in TE type people

    Relationship of the Cold-Heat Sensation of the Limbs and Abdomen with Physiological Biomarkers

    No full text
    The present study explored the relationship between the regional Cold-Heat sensation, the key indicator of the Cold-Heat patterns in traditional East Asian medicine (TEAM), and various biomarkers in Korean population. 734 apparently healthy volunteers aged 20 years and older were enrolled. Three scale self-report questions on the general thermal feel in hands, legs, and abdomen were examined. We found that 65% of women tended to perceive their body, particularly their hands and legs, to be cold, versus 25% of men. Energy expenditure and temperature load at resting state were lower in women, independently of body mass index (BMI). Those with warm hands and warm legs had a 0.74 and 0.52 kg/m2 higher BMI than those with cold hands and cold legs, respectively, regardless of age, gender, and body weight. Norepinephrine was higher, whereas the dynamic changes in glucose and insulin during an oral glucose tolerance test were lower in those with cold extremities, particularly hands. No consistent differences in biomarkers were found for the abdominal dimension. These results suggest that gender, BMI, the sympathetic nervous system, and glucose metabolism are potential determinants of the Cold-Heat sensation in the hands and legs, but not the abdomen
    corecore