33,281 research outputs found
Methods for evaluating the performance of volume phase holographic gratings for the VIRUS spectrograph array
The Visible Integral Field Replicable Unit Spectrograph (VIRUS) is an array
of at least 150 copies of a simple, fiber-fed integral field spectrograph that
will be deployed on the Hobby-Eberly Telescope (HET) to carry out the HET Dark
Energy Experiment (HETDEX). Each spectrograph contains a volume phase
holographic grating as its dispersing element that is used in first order for
350 nm to 550 nm. We discuss the test methods used to evaluate the performance
of the prototype gratings, which have aided in modifying the fabrication
prescription for achieving the specified batch diffraction efficiency required
for HETDEX. In particular, we discuss tests in which we measure the diffraction
efficiency at the nominal grating angle of incidence in VIRUS for all orders
accessible to our test bench that are allowed by the grating equation. For
select gratings, these tests have allowed us to account for > 90% of the
incident light for wavelengths within the spectral coverage of VIRUS. The
remaining light that is unaccounted for is likely being diffracted into
reflective orders or being absorbed or scattered within the grating layer (for
bluer wavelengths especially, the latter term may dominate the others).
Finally, we discuss an apparatus that will be used to quickly verify the first
order diffraction efficiency specification for the batch of at least 150 VIRUS
production gratings.Comment: 18 pages, 11 figures. To be published in Proc. SPIE, 2012,
"Ground-Based and Airborne Instrumentation for Astronomy IV", 8446-20
The structures, binding energies and vibrational frequencies of Ca3 and Ca4: An application of the CCSD(T) method
The Ca3 and Ca4 metallic clusters have been investigated using state-of-the-art ab initio quantum mechanical methods. Large atomic natural orbital basis sets have been used in conjunction with the singles and doubles coupled-cluster (CCSD) method, a coupled-cluster method that includes a perturbational estimate of connected triple excitations, denoted CCSD(T), and the multireference configuration interaction (MRCI) method. The equilibrium geometries, binding energies and harmonic vibrational frequencies have been determined with each of the methods so that the accuracy of the coupled-cluster methods may be assessed. Since the CCSD(T) method reproduces the MRCI results very well, cubic and quartic force fields of Ca3 and Ca4 have been determined using this approach and used to evaluate the fundamental vibrational frequencies. The infrared intensities of both the e' mode of Ca3 and the t2 mode of Ca4 are found to be small. The results obtained in this study are compared and contrasted with those from our earlier studies on small Be and Mg clusters
Comparison of the quadratic configuration interaction and coupled cluster approaches to electron correlation including the effect of triple excitations
The recently proposed quadratic configuration interaction (QCI) method is compared with the more rigorous coupled cluster (CC) approach for a variety of chemical systems. Some of these systems are well represented by a single-determinant reference function and others are not. The finite order singles and doubles correlation energy, the perturbational triples correlation energy, and a recently devised diagnostic for estimating the importance of multireference effects are considered. The spectroscopic constants of CuH, the equilibrium structure of cis-(NO)2 and the binding energies of Be3, Be4, Mg3, and Mg4 were calculated using both approaches. The diagnostic for estimating multireference character clearly demonstrates that the QCI method becomes less satisfactory than the CC approach as non-dynamical correlation becomes more important, in agreement with a perturbational analysis of the two methods and the numerical estimates of the triple excitation energies they yield. The results for CuH show that the differences between the two methods become more apparent as the chemical systems under investigation becomes more multireference in nature and the QCI results consequently become less reliable. Nonetheless, when the system of interest is dominated by a single reference determinant both QCI and CC give very similar results
Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions
The selective liquid phase hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on SiO₂, ZnO, γ-Al2O₃, CeO₂ is reported under extremely mild conditions. Ambient hydrogen pressure, and temperatures as low as 50 °C are shown sufficient to drive furfural hydrogenation with high conversion and >99% selectivity to furfuryl alcohol. Strong support and solvent dependencies are observed, with methanol and n-butanol proving excellent solvents for promoting high furfuryl alcohol yields over uniformly dispersed 4 nm Pt nanoparticles over MgO, CeO₂ and γ-Al₂O₃. In contrast, non-polar solvents conferred poor furfural conversion, while ethanol favored acetal by-product formation. Furfural selective hydrogenation can be tuned through controlling the oxide support, reaction solvent and temperature
Theoretical investigations of the structures and binding energies of Be(sub n) and Mg(sub n) (n = 3-5) clusters
Researchers determined the equilibrium geometries and binding energies of Be and Mg trimers, tetramers and pentamers using single and double excitation coupled cluster (CCSD) and complete active space self-consistent-field (CASSCF) multireference configuration interaction (MRCI) wave functions in conjunction with extended atomic basis sets. Best estimates of the cluster binding energies are 24, 83 and 110 kcal/mole for Be3, Be4 and Be5; and 9, 31 and 41 kcal/mole for Mg3, Mg4 and Mg5, respectively. A comparison of the MRCI and CCSD results shows that even the best single-reference approach (limited to single and double excitations) is not capable of quantitative accuracy in determining the binding energies of Be and Mg clusters
Recommended from our members
Hopane biomarkers traced from bedrock to recent sediments and ice at the Haughton Impact Structure, Devon Island: Implications for the search for biomarkers on Mars
Hopanoid biomarkers have been traced from bedrock to ice in the Haughton Impact Structure, suggesting that they represent a promising strategy in the search for life in ice deposits on Mars and other icy bodies
The determination of accurate dipole polarizabilities alpha and gamma for the noble gases
The static dipole polarizabilities alpha and gamma for the noble gases helium through xenon were determined using large flexible one-particle basis sets in conjunction with high-level treatments of electron correlation. The electron correlation methods include single and double excitation coupled-cluster theory (CCSD), an extension of CCSD that includes a perturbational estimate of connected triple excitations, CCSD(T), and second order perturbation theory (MP2). The computed alpha and gamma values are estimated to be accurate to within a few percent. Agreement with experimental data for the static hyperpolarizability gamma is good for neon and xenon, but for argon and krypton the differences are larger than the combined theoretical and experimental uncertainties. Based on our calculations, we suggest that the experimental value of gamma for argon is too low; adjusting this value would bring the experimental value of gamma for krypton into better agreement with our computed result. The MP2 values for the polarizabilities of neon, argon, krypton and zenon are in reasonabe agreement with the CCSD and CCSD(T) values, suggesting that this less expensive method may be useful in studies of polarizabilities for larger systems
The Evolution of Active Droplets in Chemorobotic Platforms
There is great interest in oil-in-water droplets as simple systems that display astonishingly complex behaviours. Recently, we reported a chemorobotic platform capable of autonomously exploring and evolving the behaviours these droplets can exhibit. The platform enabled us to undertake a large number of reproducible experiments, allowing us to probe the non-linear relationship between droplet composition and behaviour. Herein we introduce this work, and also report on the recent developments we have made to this system. These include new platforms to simultaneously evolve the droplets’ physical and chemical environments and the inclusion of selfreplicating molecules in the droplets
- …