13,646 research outputs found

    Aqueous Phase C-H Bond Oxidation Reaction of Arylalkanes Catalyzed by a Water-Soluble Cationic Ru(III) Complex [(pymox-Me\u3csub\u3e2\u3c/sub\u3e)\u3csub\u3e2\u3c/sub\u3eRuCl\u3csub\u3e2\u3c/sub\u3e]\u3csup\u3e+\u3c/sup\u3eBF\u3csub\u3e4\u3c/sub\u3e\u3csup\u3e-\u3c/sup\u3e

    Get PDF
    The cationic complex [(pymox-Me2)RuCl2]+BF4− was found to be a highly effective catalyst for the C−H bond oxidation reaction of arylalkanes in water. For example, the treatment of ethylbenzene (1.0 mmol) with t-BuOOH (3.0 mmol) and 1.0 mol % of the Ru catalyst in water (3 mL) cleanly produced PhCOCH3 at room temperature. Both a large kinetic isotope effect (kH/kD = 14) and a relatively large Hammett value (ρ = −1.1) suggest a solvent-caged oxygen rebounding mechanism via a Ru(IV)-oxo intermediate species

    Event-triggered proportional-derivative control for nonlinear network systems with a novel event-triggering scheme: Differential of triggered state consideration

    Get PDF
    This article proposes event-triggered proportional-derivative control for a class of nonlinear network control systems. For derivative action of the proposed proportional-derivative control, a novel event-triggering scheme is devised together with the control that considers a differential of a triggered state. The class of the nonlinear network systems is represented as a Lur'e system to consider various nonlinear cases. Time varying transmission delay is considered which can be defined by lower and upper delay bounds. The proposed proportional-derivative control is designed by Lyapunov-Krasovskii stability analysis, and the design condition is presented by linear matrix inequalities. The proposed event-triggered proportional-derivative control and event-triggering condition are verified with numerical simulation. ? 2017 The Author(s).111Ysciescopu

    Orientational Melting in Carbon Nanotube Ropes

    Full text link
    Using Monte Carlo simulations, we investigate the possibility of an orientational melting transition within a "rope" of (10,10) carbon nanotubes. When twisting nanotubes bundle up during the synthesis, orientational dislocations or twistons arise from the competition between the anisotropic inter-tube interactions, which tend to align neighboring tubes, and the torsion rigidity that tends to keep individual tubes straight. We map the energetics of a rope containing twistons onto a lattice gas model and find that the onset of a free "diffusion" of twistons, corresponding to orientational melting, occurs at T_OM > 160 K.Comment: 4 page LaTeX file with 3 figures (10 PostScript files

    SPH Simulations of Galactic Gaseous Disk with Bar: Distribution and Kinematic Structure of Molecular Clouds toward the Galactic Center

    Get PDF
    We have performed Smoothed Particle Hydrodynamic (SPH) simulations to study the response of molecular clouds in the Galactic disk to a rotating bar and their subsequent evolution in the Galactic Center (GC) region. The Galactic potential in our models is contributed by three axisymmetric components (massive halo, exponential disk, compact bulge) and a non-axisymmetric bar. These components are assumed to be invariant in time in the frame corotating with the bar. Some noticeable features such as an elliptical outer ring, spiral arms, a gas-depletion region, and a central concentration have been developed due to the influence of the bar. The rotating bar induces non-circular motions of the SPH particles, but hydrodynamic collisions tend to suppress the random components of the velocity. The velocity field of the SPH particles is consistent with the kinematics of molecular clouds observed in HCN (1-0) transition; these clouds are thought to be very dense clouds. However, the l-v diagram of the clouds traced by CO is quite different from that of our SPH simulation, being more similar to that obtained from simulations using collisionless particles. The lvl-v diagram of a mixture of collisional and collisionless particles gives better reproduction of the kinematic structures of the GC clouds observed in the CO line. The fact that the kinematics of HCN clouds can be reproduced by the SPH particles suggests that the dense clouds in the GC are formed via cloud collisions induced by rotating bar.Comment: 31 pages, 10 pigures, accepted for publication in Ap

    Condensation phase transitions of symmetric conserved-mass aggregation model on complex networks

    Full text link
    We investigate condensation phase transitions of symmetric conserved-mass aggregation (SCA) model on random networks (RNs) and scale-free networks (SFNs) with degree distribution P(k)kγP(k) \sim k^{-\gamma}. In SCA model, masses diffuse with unite rate, and unit mass chips off from mass with rate ω\omega. The dynamics conserves total mass density ρ\rho. In the steady state, on RNs and SFNs with γ>3\gamma>3 for ω\omega \neq \infty, we numerically show that SCA model undergoes the same type condensation transitions as those on regular lattices. However the critical line ρc(ω)\rho_c (\omega) depends on network structures. On SFNs with γ3\gamma \leq 3, the fluid phase of exponential mass distribution completely disappears and no phase transitions occurs. Instead, the condensation with exponentially decaying background mass distribution always takes place for any non-zero density. For the existence of the condensed phase for γ3\gamma \leq 3 at the zero density limit, we investigate one lamb-lion problem on RNs and SFNs. We numerically show that a lamb survives indefinitely with finite survival probability on RNs and SFNs with γ>3\gamma >3, and dies out exponentially on SFNs with γ3\gamma \leq 3. The finite life time of a lamb on SFNs with γ3\gamma \leq 3 ensures the existence of the condensation at the zero density limit on SFNs with γ3\gamma \leq 3 at which direct numerical simulations are practically impossible. At ω=\omega = \infty, we numerically confirm that complete condensation takes place for any ρ>0\rho > 0 on RNs. Together with the recent study on SFNs, the complete condensation always occurs on both RNs and SFNs in zero range process with constant hopping rate.Comment: 6 pages, 6 figure

    3D-Printed Microfluidic Device for the Detection of Pathogenic Bacteria Using Size-based Separation in Helical Channel with Trapezoid Cross-Section

    Get PDF
    A facile method has been developed to detect pathogenic bacteria using magnetic nanoparticle clusters (MNCs) and a 3D-printed helical microchannel. Antibody-functionalized MNCs were used to capture E. coli (EC) bacteria in milk, and the free MNCs and MNC-EC complexes were separated from the milk using a permanent magnet. The free MNCs and MNC-EC complexes were dispersed in a buffer solution, then the solution was injected into a helical microchannel device with or without a sheath flow. The MNC-EC complexes were separated from the free MNCs via the Dean drag force and lift force, and the separation was facilitated in the presence of a sheath flow. The concentration of the E. coli bacteria was determined using a light absorption spectrometer, and the limit of detection was found to be 10 cfu/mL in buffer solution and 100 cfu/mL in milk.open119188sciescopu

    Biodegradable Nitrogen-Doped Carbon Nanodots for Non-Invasive Photoacoustic Imaging and Photothermal Therapy

    No full text
    Multifunctional nanoparticles have been widely investigated for biomedical applications, such as imaging, therapy, and drug delivery. Especially, photoactive nanoparticles have received great attention as theranostic agents because of their heat-generating abilities after exposure to laser irradiation. However, photostability and safety issues have been the technical hurdles for further clinical applications. Here, we designed nitrogen (N)-doped carbon nanodots (N-CNDs) that have strong absorption in the near-infrared region, high photostability, and excellent biodegradability. Optimized N-CNDs can be utilized not only as a new photoacoustic (PA) imaging agent but also as a superior photothermal therapy (PTT) agent in vivo because of their strong optical absorption at a specific wavelength. We used N-CNDs to perform in vivo/ex vivo noninvasive PA imaging of sentinel lymph nodes via local delivery and performed PTT for cancer ablation therapy. Finally, biodegradation and renal clearance were confirmed by performing whole-body PA monitoring and a degradation test
    corecore