2,812 research outputs found

    Discovering mirror particles at the Large Hadron Collider and the implied cold universe

    Get PDF
    The Mirror Matter or Exact Parity Model sees every standard particle, including the physical neutral Higgs boson, paired with a parity partner. The unbroken parity symmetry forces the mass eigenstate Higgs bosons to be maximal mixtures of the ordinary and mirror Higgs bosons. Each of these mass eigenstates will therefore decay 50% of the time into invisible mirror particles, providing a clear and interesting signature for the Large Hadron Collider (LHC) which could thus establish the existence of the mirror world. However, for this effect to be observable the mass difference between the two eigenstates must be sufficiently large. In this paper, we study cosmological constraints from Big Bang Nucleosynthesis on the mass difference parameter. We find that the temperature of the radiation dominated (RD) phase of the universe should never have exceeded a few 10's of GeV if the mass difference is to be observable at the LHC. Chaotic inflation with very inefficient reheating provides an example of how such a cosmology could arise. We conclude that the LHC could thus discover the mirror world and simultaneously establish an upper bound on the temperature of the RD phase of the universe.Comment: 8pages including 1 figure, RevTeX; minor changes and added references; this version accepted by Phys Lett

    The Association of Compact Groups of Galaxies with Large-scale Structures

    Full text link
    We use various samples of compact groups (CGs) to examine the types of association CGs have with rich and poor clusters of galaxies at low (z~0.04) and intermediate (z~0.1) redshifts. We find that ~10-20 % of CGs are associated with rich clusters and a much larger fraction with poorer clusters or loose groups. Considering the incompleteness of catalogs of poorer systems at intermediate redshift, our result is consistent with all CGs at intermediate redshift being associated with larger-scale systems. The richness of the clusters associated with CGs significantly increases from z~0.04 to z~0.1, while their Bautz-Morgan type changes from early to late type for the same range in z. Neither trend is compatible with a selection effect in the cluster catalogs used. We find earlier morphological types of galaxies to be more frequent in CGs associated with larger-scale structures, compared to those in CGs not associated to such structures. We consider this as new evidence that CGs are part of the large-scale structure formation process and that they may play an important role in the evolution of galaxies in these structures.Comment: 5 pages, no figures, Proc. ESO Workshop "Groups of galaxies in the nearby Universe", Santiago, Chile, 5-9 Dec. 2005, ESO Astrophysics Symposia, eds. I. Saviane, V. Ivanov & J. Borissova, Springer-Verlag; very minor revision of text on 15 Mar 2006, added one referenc

    Partially spin polarized quantum Hall effect in the filling factor range 1/3 < nu < 2/5

    Full text link
    The residual interaction between composite fermions (CFs) can express itself through higher order fractional Hall effect. With the help of diagonalization in a truncated composite fermion basis of low-energy many-body states, we predict that quantum Hall effect with partial spin polarization is possible at several fractions between ν=1/3\nu=1/3 and ν=2/5\nu=2/5. The estimated excitation gaps are approximately two orders of magnitude smaller than the gap at ν=1/3\nu=1/3, confirming that the inter-CF interaction is extremely weak in higher CF levels.Comment: 4 pages, 3 figure
    corecore