3 research outputs found

    Transition metal oxides using quantum Monte Carlo

    Full text link
    The transition metal-oxygen bond appears prominently throughout chemistry and solid-state physics. Many materials, from biomolecules to ferroelectrics to the components of supernova remnants contain this bond in some form. Many of these materials' properties strongly depend on fine details of the TM-O bond and intricate correlation effects, which make accurate calculations of their properties very challenging. We present quantum Monte Carlo, an explicitly correlated class of methods, to improve the accuracy of electronic structure calculations over more traditional methods like density functional theory. We find that unlike s-p type bonding, the amount of hybridization of the d-p bond in TM-O materials is strongly dependant on electronic correlation.Comment: 20 pages, 4 figures, to appear as a topical review in J. Physics: Condensed Matte
    corecore