5,285 research outputs found

    Serially connected forward osmosis membrane elements of pressure-assisted forward osmosis-reverse osmosis hybrid system: Process performance and economic analysis

    Full text link
    © 2018 Elsevier B.V. Due to the improved dilution of draw streams, employing pressure-assisted forward osmosis (PAFO) to the hybrid system of forward osmosis (FO) followed by reverse osmosis (RO) for seawater desalination has been expected to reduce the overall economics. However, replacing FO with PAFO causes an additional energy cost in the seawater dilution step which inevitably leads to a question that PAFO-RO hybrid is truly an economically beneficial option. More importantly, though serial connection of FO elements improves the dilution of initial draw water, this economic benefit is also compensated with the additional membrane. To rationalize its overall performance and economic benefit, thorough performance and economic evaluations were conducted based on actual pilot-scale PAFO operations for serial connection of up to three 8040 FO elements. The results showed the FO-RO hybrid is not an economically feasible option unless a significant unit FO element cost cut-down is guaranteed. Meanwhile, PAFO-RO showed benefits with regards to target RO recovery and unit FO element cost, particularly when two FO elements are serially connected (SE2). It was found that PAFO-RO, indeed, has higher economic potential than FO-RO. A graphical overlapping method suggested in this work can help determine optimal serial configuration and operating conditions of PAFO-RO

    Role of various physical and chemical techniques for hollow fibre forward osmosis membrane cleaning

    Full text link
    © 2015 Balaban Desalination Publications. All rights reserved. Fouling is an inevitable phenomenon with most of the water treatment systems. Similar to RO, NF and other membrane-based systems, fouling also seriously affects the performance of low-cost forward-osmosis (FO) systems and disturbs the overall efficiency of these systems, and various cleaning practices have been evaluated to restore their designed performances. This study evaluates the performance of various physical and chemical cleaning techniques for hollow fibre forward-osmosis (HFFO) membrane. HFFO membrane was subjected to various fouling conditions using different brackish groundwater qualities and model organic foulants such as alginate, humic acid and bovine serum albumin. Results indicated that physical cleaning affects differently the flux restoration according to the type of foulants (i.e. inorganic or organic) and the crossflow rates play an important role in membrane cleaning in both membrane orientation. The higher cross flow Re values at any particular area seem important for the cleaning. With hydraulic flushing, the flux performances of HFFO were recovered fully when operated in AL-FS orientation, as high shear force helps to detach all scaling layers from the surface; however, the lower shear force did not fully restore the flux for the FS membrane in AL-DS orientation. Chemical cleaning was planned for the fouled HFFO membrane, and HCl and NaOH were used in various combination sequences. It was found that HCl did not clean the membrane used for AL-DS orientation for combined fouling. HCl cleaning (at pH 2) was found to be more effective for removing inorganic scale, whereas NaOH cleaning (at pH 11) for a similar period successfully restored the flux for all the membranes used for FS with inorganic and/or organic foulants. ethylenediamine tetra acetic acid (EDTA) was also evaluated for its cleaning performances and it was found that compared to NaOH, EDTA cleaning (1 mM concentration at pH 11) showed superior results in terms of membrane cleaning, as it helped to successfully restore the membrane flux in a very short time

    Fouling and its control in membrane distillation-A review

    Full text link
    © 2014 Elsevier B.V. Membrane distillation (MD) is an emerging thermally-driven technology that poses a lot of promise in desalination, and water and wastewater treatment. Developments in membrane design and the use of alternative energy sources have provided much improvement in the viability of MD for different applications. However, fouling of membranes is still one of the major issues that hounds the long-term stability performance of MD. Membrane fouling is the accumulation of unwanted materials on the surface or inside the pores of a membrane that results to a detrimental effect on the overall performance of MD. If not addressed appropriately, it could lead to membrane damage, early membrane replacement or even shutdown of operation. Similar with other membrane separation processes, fouling of MD is still an unresolved problem. Due to differences in membrane structure and design, and operational conditions, the fouling formation mechanism in MD may be different from those of pressure-driven membrane processes. In order to properly address the problem of fouling, there is a need to understand the fouling formation and mechanism happening specifically for MD. This review details the different foulants and fouling mechanisms in the MD process, their possible mitigation and control techniques, and characterization strategies that can be of help in understanding and minimizing the fouling problem

    Characteristics of membrane fouling by consecutive chemical cleaning in pressurized ultrafiltration as pre-treatment of seawater desalination

    Full text link
    © 2015 Elsevier B.V. Chemical cleaning of membranes is one of the most important strategies in pressurized hollow fiber ultrafiltration (UF) as a pre-treatment for seawater desalination. Various physical cleaning strategies such as backwashing, aeration and air-scrubbing or chemically enhanced backwashing (CEB) have been investigated in order to remove foulants from the UF membrane. However, the limitation in their cleaning effects being found during long-term operation leads to the need of cleaning in place (CIP) for the recovery of membrane performance. In this study, we used oxalic acid and sodium hypochlorite as chemical cleaning agents. The cleaning in series of oxalic acid-sodium hypochlorite-oxalic acid showed the optimal cleaning efficiency and was applied for the consecutive chemical cleaning. The recovery efficiency of the CIP after first, second, third and fourth cleanings was 96.8%, 95.8%, 98.3% and 99.9%, respectively. It was almost fully recovered to the previous recovered value. However, membrane surface structure was deformed by contact with chemical cleaning agents during cleaning time, because, hydrophilic inorganic foulants are still adhered on the membrane surface even after several cleanings although hydrophobic organic foulants were removed easily by chemical cleaning. An improved CIP strategy should be developed to remove hydrophilic foulants for long-term operation of desalination plants

    Soil-Structure Interaction on the Response of Jacket Type Offshore Wind Turbine

    Get PDF
    Jacket structures are still at the early stage of their development for use in the offshore wind industry. The aim of this paper is to investigate the effect of the soil-structure interaction on the response of an offshore wind turbine with a jacket-type foundation. For this purpose, two different models of flexible foundation-the p-y model and the p-y model considering pile groups effect-are employed to compare the dynamic responses with the fixed-base model. The modal analysis and the coupled dynamic analysis are carried out under deterministic and stochastic conditions. The influence of the soil-structure interaction on the response of the jacket foundation predicts that the flexible foundation model is necessary to estimate the loads of the offshore wind turbine structure well. It is suggested that during fatigue analysis the pile group effect should be considered for the jacket foundation.None1174Ysciescopu

    Post-Stenotic Recirculating Flow May Cause Hemodynamic Perforator Infarction

    Get PDF
    Background and Purpose The primary mechanism underlying paramedian pontine infarction (PPI) is atheroma obliterating the perforators. Here, we encountered a patient with PPI in the post-stenotic area of basilar artery (BA) without a plaque, shown, by high-resolution magnetic resonance imaging (HR-MRI). We performed an experiment using a 3D-printed BA model and a particle image velocimetry (PIV) to explore the hemodynamic property of the post-stenotic area and the mechanism of PPI. Methods 3D-model of a BA stenosis was reconstructed with silicone compound using a 3D printer based on the source image of HR-MRI. Working fluid seeded with fluorescence particles was used and the velocity of those particles was measured horizontally and vertically. Furthermore, microtubules were inserted into the posterior aspect of the model to measure the flow rates of perforators (pre- and post-stenotic areas). The flow rates were compared between the microtubules. Results A recirculating flow was observed from the post-stenotic area in both directions forming a spiral shape. The velocity of the flow in these regions of recirculation was about one-tenth that of the flow in other regions. The location of recirculating flow well corresponded with the area with low-signal intensity at the time-of-flight magnetic resonance angiography and the location of PPI. Finally, the flow rate through the microtubule inserted into the post-stenotic area was significantly decreased comparing to others (P<0.001). Conclusions Perforator infarction may be caused by a hemodynamic mechanism altered by stenosis that induces a recirculation flow. 3D-printed modeling and PIV are helpful understanding the hemodynamics of intracranial stenosis.114Ysciescopu

    Functional water flow pathways and hydraulic regulation in the xylem network of arabidopsis

    Get PDF
    In vascular plants, the xylem network constitutes a complex microfluidic system. The relationship between vascular network architecture and functional hydraulic regulation during actual water flow remains unexplored. Here, we developed a method to visualize individual xylem vessels of the 3D xylem network of Arabidopsis thaliana, and to analyze the functional activities of these vessels using synchrotron X-ray computed tomography with hydrophilic gold nanoparticles as flow tracers. We show how the organization of the xylem network changes dynamically throughout the plant, and reveal how the elementary units of this transport system are organized to ensure both long-distance axial water transport and local lateral water transport. Xylem vessels form distinct clusters that operate as functional units, and the activity of these units, which determines water flow pathways, is modulated not only by varying the number and size of xylem vessels, but also by altering their interconnectivity and spatial arrangement. Based on these findings, we propose a regulatory model of water transport that ensures hydraulic efficiency and safety.X1111Ysciescopu

    Novel membrane bioreactor (MBR) coupled with a nonwoven fabric filter for household wastewater treatment

    Full text link
    Conventional and modified membrane bioreactors (MBRs) are increasingly used in small-scale wastewater treatment. However, their widespread applications are hindered by their relatively high cost and operational complexity. In this study, we investigate a new concept of wastewater treatment using a nonwoven fabric filter bag (NFFB) as the membrane bioreactor. Activated sludge is charged in the nonwoven fabric filter bag and membrane filtration via the fabric is achieved under gravity flow without a suction pump. This study found that the biofilm layer formed inside the NFFB achieved 10 mg/L of suspended solids in the permeate within 20 min of initial operation. The dynamic biofilter layer showed good filterability and the specific membrane resistance consisted of 0.3-1.9 × 1012 m/kg. Due to the low F/M ratio (0.04-0.10 kg BOD5/m3/d) and the resultant low sludge yield, the reactor was operated without forming excess sludge. Although the reactor provided aerobic conditions, denitrification occurred in the biofilm layer to recover the alkalinity, thereby eliminating the need to supplement the alkalinity. This study indicates that the NFFB system provides a high potential of effective wastewater treatment with simple operation at reduced cost, and hence offer an attractive solution for widespread use in rural and sparsely populated areas. Crown Copyright © 2009

    Structural design of a double layered porous hydrogel for effective mass transport.

    Get PDF
    Mass transport in porous materials is universal in nature, and its worth attracts great attention in many engineering applications. Plant leaves, which work as natural hydraulic pumps for water uptake, have evolved to have the morphological structure for fast water transport to compensate large water loss by leaf transpiration. In this study, we tried to deduce the advantageous structural features of plant leaves for practical applications. Inspired by the tissue organization of the hydraulic pathways in plant leaves, analogous double-layered porous models were fabricated using agarose hydrogel. Solute transport through the hydrogel models with different thickness ratios of the two layers was experimentally observed. In addition, numerical simulation and theoretical analysis were carried out with varying porosity and thickness ratio to investigate the effect of structural factors on mass transport ability. A simple parametric study was also conducted to examine unveiled relations between structural factors. As a result, the porosity and thickness ratio of the two layers are found to govern the mass transport ability in double-layered porous materials. The hydrogel models with widely dispersed pores at a fixed porosity, i.e., close to a homogeneously porous structure, are mostly turned out to exhibit fast mass transport. The present results would provide a new framework for fundamental design of various porous structures for effective mass transport. (C) 2015 AIP Publishing LLC.open1

    Structural design of a double layered porous hydrogel for effective mass transport.

    Get PDF
    Mass transport in porous materials is universal in nature, and its worth attracts great attention in many engineering applications. Plant leaves, which work as natural hydraulic pumps for water uptake, have evolved to have the morphological structure for fast water transport to compensate large water loss by leaf transpiration. In this study, we tried to deduce the advantageous structural features of plant leaves for practical applications. Inspired by the tissue organization of the hydraulic pathways in plant leaves, analogous double-layered porous models were fabricated using agarose hydrogel. Solute transport through the hydrogel models with different thickness ratios of the two layers was experimentally observed. In addition, numerical simulation and theoretical analysis were carried out with varying porosity and thickness ratio to investigate the effect of structural factors on mass transport ability. A simple parametric study was also conducted to examine unveiled relations between structural factors. As a result, the porosity and thickness ratio of the two layers are found to govern the mass transport ability in double-layered porous materials. The hydrogel models with widely dispersed pores at a fixed porosity, i.e., close to a homogeneously porous structure, are mostly turned out to exhibit fast mass transport. The present results would provide a new framework for fundamental design of various porous structures for effective mass transport. (C) 2015 AIP Publishing LLC.open112sciescopu
    corecore