217,309 research outputs found
Computer-Aided Modeling and Analysis of Power Processing Systems (CAMAPPS), phase 1
The large-signal behaviors of a regulator depend largely on the type of power circuit topology and control. Thus, for maximum flexibility, it is best to develop models for each functional block a independent modules. A regulator can then be configured by collecting appropriate pre-defined modules for each functional block. In order to complete the component model generation for a comprehensive spacecraft power system, the following modules were developed: solar array switching unit and control; shunt regulators; and battery discharger. The capability of each module is demonstrated using a simplified Direct Energy Transfer (DET) system. Large-signal behaviors of solar array power systems were analyzed. Stability of the solar array system operating points with a nonlinear load is analyzed. The state-plane analysis illustrates trajectories of the system operating point under various conditions. Stability and transient responses of the system operating near the solar array's maximum power point are also analyzed. The solar array system mode of operation is described using the DET spacecraft power system. The DET system is simulated for various operating conditions. Transfer of the software program CAMAPPS (Computer Aided Modeling and Analysis of Power Processing Systems) to NASA/GSFC (Goddard Space Flight Center) was accomplished
Inference of stress and texture from angular dependence of ultrasonic plate mode velocities
The theory for the angular dependence of the ultrasonic wave velocity in a symmetry plane of an orthorhombic, stressed material is presented. The two waves having polarizations in this plane are shown to have velocities which can be estimated from measurements of the SH sub 0 and S sub 0 guided modes of a thin plate: the relationship being exact for the SH sub 0 mode and requiring a 10% correction for the S sub 0 mode at long wavelength. It is then shown how stress and texture can be independently inferred from various features of the angular dependence of these two velocities. From the SH sub 0 data, the ability to determine the directions and differences in magnitudes of principal stresses is described and supported by experimental data on several materials. From a combination of the SH sub 0 and S sub 0 data, a procedure is proposed for determining the coefficients W sub 400, W sub 420 and W sub 440 of an expansion of the crystallite orientation distribution function in terms of generalized Legendre functions. Possible applications in process control are indicated
Relativistic r-modes in Slowly Rotating Neutron Stars: Numerical Analysis in the Cowling Approximation
We investigate the properties of relativistic -modes of slowly rotating
neutron stars by using a relativistic version of the Cowling approximation. In
our formalism, we take into account the influence of the Coriolis like force on
the stellar oscillations, but ignore the effects of the centrifugal like force.
For three neutron star models, we calculated the fundamental -modes with
and 3. We found that the oscillation frequency of the
fundamental -mode is in a good approximation given by , where is defined in the corotating frame at the
spatial infinity, and is the angular frequency of rotation of the
star. The proportional coefficient is only weakly dependent on
, but it strongly depends on the relativistic parameter ,
where and are the mass and the radius of the star. All the fundamental
-modes with computed in this study are discrete modes with distinct
regular eigenfunctions, and they all fall in the continuous part of the
frequency spectrum associated with Kojima's equation (Kojima 1998). These
relativistic -modes are obtained by including the effects of rotation higher
than the first order of so that the buoyant force plays a role, the
situation of which is quite similar to that for the Newtonian -modes.Comment: 22 pages, 8 figures, accepted for publication in Ap
Optical investigations on : Electronic structure evolutions related to the metal-insulator transition
Optical conductivity spectra of cubic pyrochlore
(0.0{\it x}2.0) compounds are investigated. As a metal-insulator
transition (MIT) occurs around {\it x}0.8, large spectral changes are
observed. With increase of {\it x}, the correlation-induced peak between the
lower and the upper Hubbard bands seems to be suppressed, and a strong
mid-infrared feature is observed. In addition, the charge transfer peak
shifts to the lower energies. The spectral changes cannot be explained by
electronic structural evolutions in the simple bandwidth-controlled MIT
picture, but are consistent with those in the filling-controlled MIT picture.
In addition, they are also similar to the spectral changes of
YCaRuO compounds, which is a typical
filling-controlled system. This work suggests that, near the MIT, the Ru bands
could be doped with the easily polarizable Bi cations.Comment: 5 figure
Chiral Properties of Pseudoscalar Mesons on a Quenched Lattice with Overlap Fermions
The chiral properties of the pseudoscalar mesons are studied numerically on a
quenched lattice with the overlap fermion. We elucidate the role of the
zero modes in the meson propagators, particularly that of the pseudoscalar
meson. The non-perturbative renormalization constant is determined from
the axial Ward identity and is found to be almost independent of the quark mass
for the range of quark masses we study; this implies that the error is
small. The pion decay constant, , is calculated from which we
determine the lattice spacing to be 0.148 fm. We look for quenched chiral log
in the pseudoscalar decay constants and the pseudoscalar masses and we find
clear evidence for its presence. The chiral log parameter is
determined to be in the range 0.15 -- 0.4 which is consistent with that
predicted from quenched chiral perturbation theory.Comment: Version accepted for publication by PRD. A few minor typographical
errors have been corrected. 24 pages, 11 figure
Critical dynamics of the k-core pruning process
We present the theory of the k-core pruning process (progressive removal of
nodes with degree less than k) in uncorrelated random networks. We derive exact
equations describing this process and the evolution of the network structure,
and solve them numerically and, in the critical regime of the process,
analytically. We show that the pruning process exhibits three different
behaviors depending on whether the mean degree of the initial network is
above, equal to, or below the threshold _c corresponding to the emergence of
the giant k-core. We find that above the threshold the network relaxes
exponentially to the k-core. The system manifests the phenomenon known as
"critical slowing down", as the relaxation time diverges when tends to
_c. At the threshold, the dynamics become critical characterized by a
power-law relaxation (1/t^2). Below the threshold, a long-lasting transient
process (a "plateau" stage) occurs. This transient process ends with a collapse
in which the entire network disappears completely. The duration of the process
diverges when tends to _c. We show that the critical dynamics of the
pruning are determined by branching processes of spreading damage. Clusters of
nodes of degree exactly k are the evolving substrate for these branching
processes. Our theory completely describes this branching cascade of damage in
uncorrelated networks by providing the time dependent distribution function of
branching. These theoretical results are supported by our simulations of the
-core pruning in Erdos-Renyi graphs.Comment: 12 pages, 10 figure
Characterization of the residual stresses in spray-formed steels using neutron diffraction
Neutron diffraction was used to characterize the residual stresses in an as-sprayed tube-shaped steel preform. The measured residual stress distributions were compared with those simulated using finite element method by taking into account the effects of the thermal history, porosity and different phases of the sprayed preform. The porosity was measured using X-ray microcomputed tomography. The study revealed for the first time the correlation between the distribution of porosity and residual stress developed in the as-sprayed preform
Giant tunnel magnetoresistance and high annealing stability in CoFeB/MgO/CoFeB magnetic tunnel junctions with synthetic pinned layer
We investigated the relationship between tunnel magnetoresistance (TMR) ratio
and the crystallization of CoFeB layers through annealing in magnetic tunnel
junctions (MTJs) with MgO barriers that had CoFe/Ru/CoFeB synthetic ferrimagnet
pinned layers with varying Ru spacer thickness (tRu). The TMR ratio increased
with increasing annealing temperature (Ta) and tRu, reaching 361% at Ta = 425C,
whereas the TMR ratio of the MTJs with pinned layers without Ru spacers
decreased at Ta over 325C. Ruthenium spacers play an important role in forming
an (001)-oriented bcc CoFeB pinned layer, resulting in a high TMR ratio through
annealing at high temperatures.Comment: 10 pages, 5 figures, submitted to Applied Physics Letter
Pion Decay Constant, and Chiral Log from Overlap Fermions
We report our calculation of the pion decay constant , the axial
renormalization constant , and the quenched chiral logarithms from the
overlap fermions. The calculation is done on a quenched lattice at
fm using tree level tadpole improved gauge action. The smallest pion
mass we reach is about 280 MeV. The lattice size is about 4 times the Compton
wavelength of the lowest mass pion.Comment: Lattice2001(Hadronic Matrix Elements), 3pages, 5figure
- …