233,682 research outputs found

    Conductance Correlations Near Integer Quantum Hall Transitions

    Full text link
    In a disordered mesoscopic system, the typical spacing between the peaks and the valleys of the conductance as a function of Fermi energy EFE_F is called the conductance energy correlation range EcE_c. Under the ergodic hypothesis, the latter is determined by the half-width of the ensemble averaged conductance correlation function: F=F= . In ordinary diffusive metals, EcD/L2E_c\sim D/L^2, where DD is the diffusion constant and LL is the linear dimension of the phase-coherent sample. However, near a quantum phase transition driven by the location of the Fermi energy EFE_F, the above picture breaks down. As an example of the latter, we study, for the first time, the conductance correlations near the integer quantum Hall transitions of which EFE_F is a critical coupling constant. We point out that the behavior of FF is determined by the interplay between the static and the dynamic properties of the critical phenomena.Comment: 4 pages, 4 figures, minor corrections, to appear in Phys. Rev. Let

    Dynamical renormalization group approach to the Altarelli-Parisi-Lipatov equations

    Full text link
    The Altarelli-Parisi-Lipatov equations for the parton distribution functions are rederived using the dynamical renormalization group approach to quantum kinetics. This method systematically treats the ln Q^2 corrections that arises in perturbation theory as a renormalization of the parton distribution function and unambiguously indicates that the strong coupling must be allowed to run with the scale in the evolution kernel. To leading logarithmic accuracy the evolution equation is Markovian and the logarithmic divergences in the perturbative expansion are identified with the secular divergences (terms that grow in time) that emerge in a perturbative treatment of the kinetic equations in nonequilibrium systems. The resummation of the leading logarithms by the Altarelli-Parisi-Lipatov equation is thus similar to the resummation of the leading secular terms by the Boltzmann kinetic equation.Comment: 8 pages, version to appear in Phys. Rev.

    Pion-Exchange and Fermi-Motion Effects on the Proton-Deuteron Drell-Yan Process

    Full text link
    Within a nuclear model that the deuteron has NN and \pi NN components, we derive convolution formula for investigating the Drell-Yan process in proton-deuteron (pd) reactions. The contribution from the \pi NN component is expressed in terms of a pion momentum distribution that depends sensitively on the \pi NN form factor. With a \pi NN form factor determined by fitting the \pi N scattering data up to invariant mass W = 1.3 GeV, we find that the pion-exchange and nucleon Fermi-motion effects can change significantly the ratios between the proton-deuteron and proton-proton Drell-Yan cross sections, R_{pd/pp} = \sigma^{pd}/(2\sigma^{pp}), in the region where the partons emitted from the target deuteron are in the Bjorken x_2 > 0.4 region. The calculated ratios R_{pd/pp} at 800 GeV agree with the available data. Predictions at 120 GeV for analyzing the forthcoming data from Fermilab are presented.Comment: 27 pages, 10 figures. A couple of new numerical results are added. arXiv admin note: substantial text overlap with arXiv:1106.556

    Nematic order of model goethite nanorods in a magnetic field

    Full text link
    We explore the nematic order of model goethite nanorods in an external magnetic field within Onsager-Parsons density functional theory. The goethite rods are represented by monodisperse, charged spherocylinders with a permanent magnetic moment along the rod main axis, forcing the particles to align parallel to the magnetic field at low field strength. The intrinsic diamagnetic susceptibility anisometry of the rods is negative which leads to a preferred perpendicular orientation at higher field strength. It is shown that these counteracting effects may give rise to intricate phase behavior, including a pronounced stability of biaxial nematic order and the presence of reentrant phase transitions and demixing phenomena. The effect of the applied field on the nematic-to-smectic transition will also be addressed.Comment: 12 pages, 5 figures, submitted to Phys. Rev.
    corecore